Sunday, June 07, 2009

L-TYPE-BSE, H-TYPE-BSE, C-TYPE-BSE, IBNC-TYPE-BSE, TME, CWD, SCRAPIE, CJD, NORTH AMERICA

L-TYPE-BSE, H-TYPE-BSE, C-TYPE-BSE, IBNC-TYPE-BSE, TME, CWD, SCRAPIE, CJD, NORTH AMERICA, something to ponder ;

confusious ask, what if ;


Session I - Prions: Structure, Strain and Detection (II)

Searching for BASE Strain Signature in Sporadic Creutzfedlt-Jakob Disease

Gianluigi Zanusso

Department of Neurological and Visual Sciences, Section of Clinical Neurology University of Verona, Verona, Italy.

Bovine amyloidotic spongiform encephalopathy (BASE) is a newly recognized form of bovine prion disease, which was originally detected in Italy in 2004 as an effect of active surveillance. BASE or BSE L-type (L is referred to the lower electrophoretic PrPSc migration than classical BSE) has now been reported in several countries, including Japan. All field cases of BASE were older than 8 years and neurologically normal at the time of slaughtered. By experimental transmission, we defined the disease phenotype of cattle BASE, which is quite distinct from that seen in typical BSE and characterized by mental dullness and amyotrophy. Surprisingly, following intraspecies and interspecies transmission the incubation period of BASE was shorter than BSE. The relatively easy transmission of BASE isolate as well as the molecular similarity with sporadic Creutzfeldt-Jakob disease (sCJD) have raised concern regarding its potential passage to humans. Tg humanized mice Met/Met at codon 129 challenged with both BSE and BASE isolates, showed a resistance to BSE but a susceptibility to BASE at a 60% rate; in addition, BASE-inoculated Cynomolgus (129 Met/Met) had shorter incubation periods than BSE-inoculated primates. In this study we compared the biochemical properties of PrPSc in Cynomolgus and in TgHu Met/Met mice challenged with BSE and BASE strains, by conventional SDS-PAGE analysis and 2D separation. The results obtained disclose distinct conformational changes in PrPSc, which are dependent on the inoculated host but not on the codon 129 genotype.

This work was supported by Neuroprion contract n. FOOD CT 2004 -506579 (NOE)



http://www.istitutoveneto.it/prion_09/Abstracts_09.pdf




P26

TRANSMISSION OF ATYPICAL BOVINE SPONGIFORM ENCEPHALOPATHY (BSE) IN HUMANIZED MOUSE MODELS

Liuting Qing1, Fusong Chen1, Michael Payne1, Wenquan Zou1, Cristina Casalone2, Martin Groschup3, Miroslaw Polak4, Maria Caramelli2, Pierluigi Gambetti1, Juergen Richt5*, and Qingzhong Kong1

1Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA; 2CEA, Istituto Zooprofilattico Sperimentale, Italy; 3Friedrich-Loeffler-Institut, Germany; 4National Veterinary Research Institute, Poland; 5Kansas State University, Diagnostic Medicine/Pathobiology Department, Manhattan, KS 66506, USA. *Previous address: USDA National Animal Disease Center, Ames, IA 50010, USA

Classical BSE is a world-wide prion disease in cattle, and the classical BSE strain (BSE-C) has led to over 200 cases of clinical human infection (variant CJD). Two atypical BSE strains, BSE-L (also named BASE) and BSE-H, have been discovered in three continents since 2004. The first case of naturally occurring BSE with mutated bovine PrP gene (termed BSE-M) was also found in 2006 in the USA. The transmissibility and phenotypes of these atypical BSE strains/isolates in humans were unknown.

We have inoculated humanized transgenic mice with classical and atypical BSE strains (BSE-C, BSE-L, BSE-H) and the BSE-M isolate. We have found that the atypical BSE-L strain is much more virulent than the classical BSE-C. The atypical BSE-H strain is also transmissible in the humanized transgenic mice with distinct phenotype, but no transmission has been observed for the BSE-M isolate so far.



http://www.istitutoveneto.it/prion_09/Abstracts_09.pdf



Wednesday, February 11, 2009

Atypical BSE North America Update February 2009 Both of the BSE cases ascertained in the US native-born cattle were atypical cases (H-type), which contributed to the initial ambiguity of the diagnosis. 174, 185 In Canada, there have been 2 atypical BSE cases in addition to the 14 cases of the classic UK strain of BSE2: one was the H-type, and the other was of the L-type.198


snip...end


source : Enhanced Abstract Journal of the American Veterinary Medical Association January 1, 2009, Vol. 234, No. 1, Pages 59-72 Bovine spongiform encephalopathy Jane L. Harman, DVM, PhD; Christopher J. Silva, PhD



http://avmajournals.avma.org/doi/ref/10.2460/javma.234.1.59




Atypical BSE North America Update February 2009



http://bse-atypical.blogspot.com/2009/02/atypical-bse-north-america-update.html



Atypical BSE (BASE) Transmitted from Asymptomatic Aging Cattle to a Primate

Emmanuel E. Comoy1*, Cristina Casalone2, Nathalie Lescoutra-Etchegaray1, Gianluigi Zanusso3, Sophie Freire1, Dominique Marcé1, Frédéric Auvré1, Marie-Magdeleine Ruchoux1, Sergio Ferrari3, Salvatore Monaco3, Nicole Salès4, Maria Caramelli2, Philippe Leboulch1,5, Paul Brown1, Corinne I. Lasmézas4, Jean-Philippe Deslys1

1 Institute of Emerging Diseases and Innovative Therapies, CEA, Fontenay-aux-Roses, France, 2 Istituto Zooprofilattico Sperimentale del Piemonte, Turin, Italy, 3 Policlinico G.B. Rossi, Verona, Italy, 4 Scripps Florida, Jupiter, Florida, United States of America, 5 Genetics Division, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America

Abstract Top Background Human variant Creutzfeldt-Jakob Disease (vCJD) results from foodborne transmission of prions from slaughtered cattle with classical Bovine Spongiform Encephalopathy (cBSE). Atypical forms of BSE, which remain mostly asymptomatic in aging cattle, were recently identified at slaughterhouses throughout Europe and North America, raising a question about human susceptibility to these new prion strains.

Methodology/Principal Findings Brain homogenates from cattle with classical BSE and atypical (BASE) infections were inoculated intracerebrally into cynomolgus monkeys (Macacca fascicularis), a non-human primate model previously demonstrated to be susceptible to the original strain of cBSE. The resulting diseases were compared in terms of clinical signs, histology and biochemistry of the abnormal prion protein (PrPres). The single monkey infected with BASE had a shorter survival, and a different clinical evolution, histopathology, and prion protein (PrPres) pattern than was observed for either classical BSE or vCJD-inoculated animals. Also, the biochemical signature of PrPres in the BASE-inoculated animal was found to have a higher proteinase K sensitivity of the octa-repeat region. We found the same biochemical signature in three of four human patients with sporadic CJD and an MM type 2 PrP genotype who lived in the same country as the infected bovine.

Conclusion/Significance Our results point to a possibly higher degree of pathogenicity of BASE than classical BSE in primates and also raise a question about a possible link to one uncommon subset of cases of apparently sporadic CJD. Thus, despite the waning epidemic of classical BSE, the occurrence of atypical strains should temper the urge to relax measures currently in place to protect public health from accidental contamination by BSE-contaminated products.

Citation: Comoy EE, Casalone C, Lescoutra-Etchegaray N, Zanusso G, Freire S, et al. (2008) Atypical BSE (BASE) Transmitted from Asymptomatic Aging Cattle to a Primate. PLoS ONE 3(8): e3017. doi:10.1371/journal.pone.0003017

Editor: Neil Mabbott, University of Edinburgh, United Kingdom

Received: April 24, 2008; Accepted: August 1, 2008; Published: August 20, 2008

Copyright: © 2008 Comoy et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work has been supported by the Network of Excellence NeuroPrion.

Competing interests: CEA owns a patent covering the BSE diagnostic tests commercialized by the company Bio-Rad.

* E-mail: mhtml:%7B33B38F65-8D2E-434D-8F9B-8BDCD77D3066%7Dmid://00000110/!x-usc:mailto:emmanuel.comoy@cea.fr



http://www.plosone.org/article/info:doi/10.1371/journal.pone.0003017




Saturday, December 01, 2007

Phenotypic Similarity of Transmissible Mink Encephalopathy in Cattle and L-type Bovine Spongiform Encephalopathy in a Mouse Model

Volume 13, Number 12–December 2007 Research

Phenotypic Similarity of Transmissible Mink Encephalopathy in Cattle and L-type Bovine Spongiform Encephalopathy in a Mouse Model

Thierry Baron,* Anna Bencsik,* Anne-Gaëlle Biacabe,* Eric Morignat,* andRichard A. Bessen†*Agence Française de Sécurité Sanitaire des Aliments–Lyon, Lyon, France; and†Montana State University, Bozeman, Montana, USA

Abstract

Transmissible mink encepholapathy (TME) is a foodborne transmissible spongiform encephalopathy (TSE) of ranch-raised mink; infection with a ruminant TSE has been proposed as the cause, but the precise origin of TME is unknown. To compare the phenotypes of each TSE, bovine-passaged TME isolate and 3 distinct natural bovine spongiform encephalopathy (BSE) agents (typical BSE, H-type BSE, and L-type BSE) were inoculated into an ovine transgenic mouse line (TgOvPrP4). Transgenic mice were susceptible to infection with bovine-passaged TME, typical BSE, and L-type BSE but not to H-type BSE. Based on survival periods, brain lesions profiles, disease-associated prion protein brain distribution, and biochemical properties of protease-resistant prion protein, typical BSE had a distint phenotype in ovine transgenic mice compared to L-type BSE and bovine TME.The similar phenotypic properties of L-type BSE and bovine TME in TgOvPrP4 mice suggest that L-type BSE is a much more likely candidate for the origin of TME than is typical BSE.

snip...

Conclusion

These studies provide experimental evidence that the Stetsonville TME agent is distinct from typical BSE but has phenotypic similarities to L-type BSE in TgOvPrP4 mice. Our conclusion is that L-type BSE is a more likely candidate for a bovine source of TME infection than typical BSE. In the scenario that a ruminant TSE is the source for TME infection in mink, this would be a second example of transmission of a TSE from ruminants to non-ruminants under natural conditions or farming practices in addition to transmission of typical BSE to humans, domestic cats, and exotic zoo animals(37). The potential importance of this finding is relevant to L-type BSE, which based on experimental transmission into humanized PrP transgenic mice and macaques, suggests that L-type BSE is more pathogenic for humans than typical BSE (24,38).



http://www.cdc.gov/eid/content/13/12/1887.htm?s_cid=eid1887_e




Transmissible Mink Encephalopathy TME

Subject: In Confidence - Perceptions of unconventional slow virus diseasesof animals in the USA - APRIL-MAY 1989 - G A H Wells




http://transmissible-mink-encephalopathy.blogspot.com/2007/12/phenotypic-similarity-of-transmissible.html




Dr. Thornsberry: Let's hypothesize that I had some cattle on the eastern slope and they were in the same pasture with elk with CWD. If a cow had been exposed to the PRP Scrapie and it did develop disease four years later, would that look like BSE? Would there be a way to determine if it came from CWD?

Dr. Bartz: The IC studies in cattle indicate it does not look like BSE. The clinical signs of the IC/CWD cattle are more like downer cattle, and not aggressive. As far as finding the source of a bovine TSE, the gold standard is the lesion profile study where you take cattle tissue and inoculate it into mice with appropriate controls, wait until the mice come down, and do the lesion profiling.




http://transmissible-mink-encephalopathy.blogspot.com/



http://transmissible-mink-encephalopathy.blogspot.com/2006_12_01_archive.html




3.57 The experiment which might have determined whether BSE and scrapie were caused by the same agent (ie, the feeding of natural scrapie to cattle) was never undertaken in the UK. It was, however, performed in the USA in 1979, when it was shown that cattle inoculated with the scrapie agent endemic in the flock of Suffolk sheep at the United States Department of Agriculture in Mission, Texas, developed a TSE quite unlike BSE.339 The findings of the initial transmission, though not of the clinical or neurohistological examination, were communicated in October 1988 to Dr Watson, Director of the CVL, following a visit by Dr Wrathall, one of the project leaders in the Pathology Department of the CVL, to the United States Department of Agriculture.340 The results were not published at this point, since the attempted transmission to mice from the experimental cow brain had been inconclusive. The results of the clinical and histological differences between scrapie-affected sheep and cattle were published in 1995. Similar studies in which cattle were inoculated intracerebrally with scrapie inocula derived from a number of scrapie-affected sheep of different breeds and from different States, were carried out at the US National Animal Disease Centre.341 The results, published in 1994, showed that this source of scrapie agent, though pathogenic for cattle,

*** did not produce the same clinical signs of brain lesions characteristic of BSE. ***

3.58 There are several possible reasons why the experiment was not performed in the UK. It had been recommended by Sir Richard Southwood (Chairman of the Working Party on Bovine Spongiform Encephalopathy) in his letter to the Permanent Secretary of MAFF, Mr (now Sir) Derek Andrews, on 21 June 1988,342 though it was not specifically recommended in the Working Party Report or indeed in the Tyrrell Committee Report (details of the Southwood Working Party and the Tyrell Committee can be found in vol. 4: The Southwood Working Party, 1988–89 and vol. 11: Scientists after Southwood respectively). The direct inoculation of scrapie into calves was given low priority, because of its high cost and because it was known that it had already taken place in the USA.343 It was also felt that the results of such an experiment would be hard to interpret. While a negative result 337 Fraser, H., Bruce, M., Chree, A., McConnell, I. and Wells, G. (1992) Transmission of Bovine Spongiform Encephalopathy and Scrapie to Mice, Journal of General Virology, 73, 1891–7; Bruce, M., Chree, A., McConnell, I., Foster, J., Pearson, G. and Fraser, H. (1994) Transmission of Bovine Spongiform Encephalopathy and Scrapie to Mice: Strain Variation and the Species Barrier, Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 343, 405–11 338 Bruce, M., Will, R., Ironside, J., McConell, I., Drummond, D., Suttie, A., McCordie, L., Chree, A., Hope, J., Birkett, C., Cousens, S., Fraser, H. and Bostock, C. (1997) Transmissions to Mice Indicate that ‘New Variant’ CJD is Caused by the BSE Agent, Nature, 389, 498–501 339 Clark, W., Hourrigan, J. and Hadlow, W. (1995) Encephalopathy in Cattle Experimentally Infected with the Scrapie Agent, American Journal of Veterinary Research, 56, 606–12 340 YB88/10.00/1.1 341 Cutlip, R., Miller, J., Race, R., Jenny, A., Katz, J., Lehmkuhl, H., Debey, B. and Robinson, M. (1994) Intracerebral Transmission of Scrapie to Cattle, Journal of Infectious Diseases, 169, 814–20 342 YB88/6.21/1.2 343 YB88/11.17/2.4 SCIENCE 84 would be informative, a positive result would need to demonstrate that when scrapie was transmitted to cattle, the disease which developed in cattle was the same as BSE.344 Given the large number of strains of scrapie and the possibility that BSE was one of them, it would be necessary to transmit every scrapie strain to cattle separately, to test the hypothesis properly. Such an experiment would be expensive. Secondly, as measures to control the epidemic took hold, the need for the experiment from the policy viewpoint was not considered so urgent. It was felt that the results would be mainly of academic interest.345 3.59 Nevertheless, from the first demonstration of transmissibility of BSE in 1988, the possibility of differences in the transmission properties of BSE and scrapie was clear. Scrapie was transmissible to hamsters, but by 1988 attempts to transmit BSE to hamsters had failed. Subsequent findings increased that possibility.



http://www.bseinquiry.gov.uk/pdf/volume2/chapter3.pdf




Monday, May 11, 2009

Rare BSE mutation raises concerns over risks to public health



http://bse-atypical.blogspot.com/2009/05/rare-bse-mutation-raises-concerns-over.html




Sunday, April 12, 2009 BSE MAD COW TESTING USA 2009 FIGURES Month Number of Tests

Feb 2009 -- 1,891

Jan 2009 -- 4,620



http://www.aphis.usda.gov/newsroom/hot_issues/bse/surveillance/ongoing_surv_results.shtml



SEE FULL TEXT ;



http://madcowtesting.blogspot.com/2009/04/bse-mad-cow-testing-usa-2009-figures.html




Monday, May 4, 2009

Back to the Past With New TSE Testing Agricultural Research/May-June 2009



http://madcowtesting.blogspot.com/2009/05/back-to-past-with-new-tse-testing.html




Sunday, May 10, 2009

Identification and characterization of bovine spongiform encephalopathy cases diagnosed and NOT diagnosed in the United States



http://bse-atypical.blogspot.com/2009/05/identification-and-characterization-of.html



Saturday, February 28, 2009NEW RESULTS ON IDIOPATHIC BRAINSTEM NEURONAL CHROMATOLYSIS TYPE BSE

"All of the 15 cattle tested showed that the brains had abnormally accumulated PrP" 2009
SEAC 102/2


http://bse-atypical.blogspot.com/2009/02/new-results-on-idiopathic-brainstem.html



Wednesday, October 08, 2008

Idiopathic Brainstem Neuronal Chromatolysis (IBNC): a novel prion protein related disorder of cattle?



http://bse-atypical.blogspot.com/2008/10/idiopathic-brainstem-neuronal.html




''THE LINE TO TAKE'' ON IBNC $$$ 1995 $$$

1995

page 9 of 14 ;30. The Committee noted that the results were unusual. the questioned whether there could be coincidental BSE infection or contamination with scrapie. Dr. Tyrell noted that the feeling of the committee was that this did not represent a new agent but it was important to be prepared to say something publicly about these findings. A suggested line to take was that these were scientifically unpublishable results but in line with the policy of openness they would be made publicly available and further work done to test their validity. Since the BSE precautions were applied to IBNC cases, human health was protected. Further investigations should be carried out on isolations from brains of IBNC cases with removal of the brain and subsequent handling under strict conditions to avoid the risk of any contamination.31. Mr. Bradley informed the Committee that the CVO had informed the CMO about the IBNC results and the transmission from retina and he, like the Committee was satisfied that the controls already in place or proposed were adequate. ...

snip... see full text


http://www.bseinquiry.gov.uk/files/yb/1995/06/21005001.pdf



Wednesday, August 20, 2008

Bovine Spongiform Encephalopathy Mad Cow Disease typical and atypical strains, was there a cover-up ?

August 20, 2008


snip...


another question, just how long have these atypical BSE TSEs been around in the bovine ???let's look at another case of atypical BSE in Germany way back in 1992 ;Subject: atypical BSE reported in 1992 and conviently slaughterd and incinerated and then swept under rug for about 12 years Date: April 26, 2007 at 1:08 pm PST 1992NEW BRAIN DISORDER3. WHAT ABOUT REPORTS OF NEW FORM OF BSE?THE VETERINARY RECORD HAS PUBLISHED AN ARTICLE ON A NEW BRAIN DISORDER OF CATTLE DISCOVERED THROUGH OUR CONTROL MEASURES FOR BSE. ALTHOUGH IT PRESENTS SIMILAR CLINICAL SIGNS TO BSE THERE ARE MAJOR DIFFERENCES IN THE HISTOPATHOLOGY AND INCUBATION PERIODS BETWEEN THE TWO. MUST EMPHASISE THAT THIS IS NOT BSE.4. IS THIS NEW BRAIN DISORDER A THREAT?WE DO NOT EVEN KNOW WHETHER THE AGENT OF THIS DISEASE IS TRANSMISSIBLE. IN ANY CASE, CASES SO FAR IDENTIFIED HAD SHOWN SIMILAR SYMPTOMS TO THOSE OF BSE, AND THEREFORE HAVE BEEN SLAUGHTERED AND INCINERATED, SO THAT IF A TRANSMISSIBLE AGENT WERE INVOLVED IT WOULD HAVE BEEN ELIMINATED. .......



http://www.bseinquiry.gov.uk/files/yb/1992/10/26001001.pdf




2. The Collinge/Will dispute appears to rumble on. Dr. Collinge had told Dr. Tyrrell that Dr. Will's response to his criticism about sharing material had been ''quite unacceptable'' (in spite of it's apparently conciliatory tone). Apparently Professor Allen was now going to try and arrange a meeting to resolve the dispute. No action here for MAFF, although Mr. Murray may be interested.3. Dr. Tyrrell regretted that the Committee had not seen the article on BBD. However he felt that for the time being NO specific action was called for. The most important need was to consider the possibility that the condition might be transmissible. As we have discussed, I suggested that we might circulate a paper to the members of the committee giving our appreciation of this condition (and perhaps of other non-BSE neurological conditions that had been identified in negative cases) and of any necessary follow up action. IF any Committee member felt strongly about this, or if the issue CAME TO A HEAD, we would call an interim meeting. He was happy with this approach. I would be grateful if Mr. Maslin could, in discussion with CVL and veterinary colleagues draft such a note, which will presumably very largely follow what Mr. Bradley's briefing paper has already said, taking account of DOH comments, We can then clear a final version with DOH before circulating it to Committee members.




http://www.bseinquiry.gov.uk/files/yb/1992/10/29005001.pdf




IN CONFIDENCE

This is a highly competitive field and it really will be a pity if we allow many of the key findings to be published by overseas groups while we are unable to pursue our research findings because of this disagreement, which I hope we can make every effort to solve.




http://www.bseinquiry.gov.uk/files/yb/1992/10/26002001.pdf




COLLINGE THREATENS TO GO TO MEDIA




http://www.bseinquiry.gov.uk/files/yb/1992/12/16005001.pdf




2. The discovery might indicate the existence of a different strain of BSE from that present in the general epidemic or an unusual response by an individual host.3. If further atypical lesion distribution cases are revealed in this herd then implications of misdiagnosis of 'negative' cases in other herds may not be insignificant.snip...This minute is re-issued with a wider distribution. The information contained herein should NOT be disseminated further except on the basis of ''NEED TO KNOW''.

R Bradley


http://www.bseinquiry.gov.uk/files/yb/1993/02/17001001.pdf



IN CONFIDENCE

BSE ATYPICAL LESION DISTRIBUTION


http://www.bseinquiry.gov.uk/files/yb/1993/03/14001001.pdf



ALABAMA MAD COW CASE



snip...


see full text ;



http://bse-atypical.blogspot.com/2008/08/bovine-spongiform-encephalopathy-mad.html



Friday, May 29, 2009

Characterization of a U.S. Sheep Scrapie Isolate with Short Incubation Time


http://scrapie-usa.blogspot.com/2009/05/characterization-of-us-sheep-scrapie.html


Friday, May 29, 2009

Seven Deer Test Positive for Chronic Wasting Disease During 2009 Spring Collections in Hampshire County, West Virginia



http://chronic-wasting-disease.blogspot.com/2009/05/seven-deer-test-positive-for-chronic.html



O.K. confusious asks, IF all these new atypical BSEs i.e. new strains of mad cow disease is just an 'OLD COW PRION DISEASE', why then can not the 'old human prion disease' such as the sporadic CJD, be from an 'old cow prion disease', same as the nvCJD 'young people mad cow disease' (which also happens in 74 year old), but why cannot the 'old cow prion diseases', i.e. l-BSE, h-BSE, and ibncBSE, cause the 'old people prion disease', which looks like sporadic CJD. seems that is what some of the pathology is showing ???

OH, that probably makes too much sense, and that the only answer could be that it's all just a happenstance of bad luck and or a spontaneous event, that just happens out of the clear blue sky $$$

IF this is the case, then where are all the SPONTANEOUS BSE CASES OF MAD COW DISEASE IN THE U.S.A., AND WHERE HAVE THEY BEEN BURIED IN THE USA OVER THE LAST 25 YEARS ???


Thursday, April 30, 2009

FDA Issues Final Guidance for Renderers on Substances Prohibited From Use in Animal Food or Feed CVM Update Back April 30, 2009



http://madcowfeed.blogspot.com/2009/04/fda-issues-final-guidance-for-renderers.html




Sunday, December 28, 2008

MAD COW DISEASE USA DECEMBER 28, 2008 an 8 year review of a failed and flawed policy



http://bse-atypical.blogspot.com/2008/12/mad-cow-disease-usa-december-28-2008-8.html




Wednesday, August 20, 2008

Bovine Spongiform Encephalopathy Mad Cow Disease typical and atypical strains, was there a cover-up ?



http://bse-atypical.blogspot.com/2008/08/bovine-spongiform-encephalopathy-mad.html





Monday, June 01, 2009

Biochemical typing of pathological prion protein in aging cattle with BSE



http://bse-atypical.blogspot.com/2009/06/biochemical-typing-of-pathological.html




SPORADIC CJD CASES RISING IN U.S.A


Monday, April 20, 2009 National Prion Disease Pathology Surveillance Center Cases Examined1 (December 31, 2008)

April 20, 2009

National Prion Disease Pathology Surveillance Center Cases Examined1 (December 31, 2008)

National Prion Disease Pathology Surveillance Center Cases Examined1

(December 31, 2008)

Year Total Referrals2 Prion Disease Sporadic Familial Iatrogenic vCJD

1996 & earlier 42 32 28 4 0 0

1997 115 68 59 9 0 0

1998 93 53 45 7 1 0

1999 115 69 61 8 0 0

2000 151 103 89 14 0 0

2001 210 118 108 9 0 0

2002 258 147 123 22 2 0

2003 273 176 135 41 0 0

2004 335 184 162 21 0 13

2005 346 193 154 38 1 0

2006 380 192 159 32 0 14

2007 370 212 185 26 0 0

2008 383 228 182 23 0 0

TOTAL 30715 17756 1490 254 4 2

1 Listed based on the year of death or, if not available, on year of referral; 2 Cases with suspected prion disease for which brain tissue and/or blood (in familial cases) were submitted; 3 Disease acquired in the United Kingdom; 4 Disease acquired in Saudi Arabia; 5 Includes 20 cases in which the diagnosis is pending, and 17 inconclusive cases; 6 Includes 25 cases with type determination pending in which the diagnosis of vCJD has been excluded.

Rev 2/13/09 National



http://www.cjdsurveillance.com/pdf/case-table.pdf



http://www.cjdsurveillance.com/resources-casereport.html



http://www.aan.com/news/?event=read&article_id=4397&page=72.45.45



*5 Includes 20 cases in which the diagnosis is pending, and 17 inconclusive cases; *6 Includes 25 cases with type determination pending in which the diagnosis of vCJD has been excluded.


Greetings,


it would be interesting to know what year these atypical cases occurred, as opposed to lumping them in with the totals only.

are they accumulating ?

did they occur in one year, two years, same state, same city ?

location would be very interesting ?

age group ?

sex ?

how was it determined that nvCJD was ruled out ?

from 1997, the year i started dealing with this nightmare, there were 28 cases (per this report), up until 2007 where the total was 185 cases (per this report), and to date 2008 is at 182. a staggering increase in my opinion, for something that just happens spontaneously as some would have us believe. i don't believe it, not in 85%+ of all sporadic CJD cases. actually, i do not believe yet that anyone has proven that any of the sporadic CJD cases have been proven to be a spontaneous misfolding of a protein. there are many potential routes and sources for the sporadic CJD's. ...TSS

please see full text here ;



http://prionunitusaupdate2008.blogspot.com/2009/04/national-prion-disease-pathology.html




Monday, June 01, 2009

Biochemical typing of pathological prion protein in aging cattle with BSE


http://bse-atypical.blogspot.com/2009/06/biochemical-typing-of-pathological.html



Friday, May 29, 2009

Characterization of a U.S. Sheep Scrapie Isolate with Short Incubation Time


http://scrapie-usa.blogspot.com/2009/05/characterization-of-us-sheep-scrapie.html




Friday, May 29, 2009

Seven Deer Test Positive for Chronic Wasting Disease During 2009 Spring Collections in Hampshire County, West Virginia



http://chronic-wasting-disease.blogspot.com/2009/05/seven-deer-test-positive-for-chronic.html




Terry S. Singeltary Sr.
P.O. Box 42
Bacliff, Texas USA 77518

Labels: , , , , , , , ,

0 Comments:

Post a Comment

Subscribe to Post Comments [Atom]

<< Home