Thursday, July 24, 2014

Protocol for further laboratory investigations into the distribution of infectivity of Atypical BSE SCIENTIFIC REPORT OF EFSA

New protocol for Atypical BSE investigations

 

News in brief

 

21 July 2014

 

EFSA has developed a laboratory protocol on how to conduct new studies for investigating the presence of the agent of Atypical Bovine Spongiform Encephalopathy (BSE) in tissues of infected cattle. Guidance includes the number of animals to be tested, the tissues to be analysed and the methods to detect the agent of disease.

 

BSE belongs to a group of diseases called Transmissible Spongiform Encephalopathies that affect the brain and nervous system of humans and animals. BSE can be divided into Classical BSE and Atypical BSE.

 

Current knowledge on Atypical BSE is limited and the implementation of this protocol will contribute to fill information gaps.

 

 Protocol for further laboratory investigations into the distribution of infectivity of Atypical BSE

 


 

for further laboratory investigations into the distribution of infectivity of Atypical BSE EFSA Journal 2014;12(7):3798 [55 pp.]. doi:10.2903/j.efsa.2014.3798 European Food Safety AuthorityAcknowledgment EFSA wishes to thank the members of the Working Group on Atypical BSE study protocol: Olivier Andreoletti, Anne Balkema-Buschmann, Vincent Béringue, Marion Simmons and Juan-Maria Torres for the preparatory work on this scientific output, the members of the EFSA Panel on Biological Hazards (BIOHAZ) for their endorsement of the scientific output, and EFSA staff members: Winy Messens and Pietro Stella for the support provided to this scientific output. Contact biohaz@efsa.europa.eu

 

Type: Scientific Report of EFSA On request from: European Commission Question number: EFSA-Q-2013-01015 Approved: 11 July 2014 Published: 21 July 2014 Affiliation: European Food Safety Authority (EFSA) Parma Italy Article (1.1 Mb) Abstract Information on the pathogenesis and tissue distribution of Atypical Bovine Spongiform Encephalopathy (BSE) in cattle through the study of field cases and experimental transmission studies is lacking. The latter are limited to transmission of Atypical BSE through intracerebral (i.c.) inoculation of cattle. All data currently available relate to the presence or absence of PrPSc, but do not quantify relative amounts of PrPSc or levels of infectivity. A laboratory protocol for further studies is recommended, to allow the assessment of the relative infectious titre, PrPSc accumulation and prion seeding activity in the tissues of cattle that developed H-BSE or L-BSE (using posterior brainstem as a reference). Tissues to be covered by those studies are categorised in three priorities, based on their inclusion in the list of specific risk material in cattle, on the presence of infectivity, or PrPSc presence, demonstrated in Atypical BSEs or other Transmissible Spongiform Encephalopathies (TSEs) in ruminants, and on the importance in terms of input into the food chain in the EU. The protocol provides details in terms of the minimum number of animals to be tested, processing and preparation of tissues, and methods to be used to identify abnormal PrP and quantify infectivity, also depending on the expected level of infectivity and amount of tissue available for analysis. It is recommended that, through the implementation of the protocol, information should also be obtained on the performance of currently validated rapid tests for TSE active surveillance in cattle/bioassay for detecting H-BSE and L-BSE agents.

 

© European Food Safety Authority, 2014

 

Summary Following a request from the European Commission, EFSA was asked to provide scientific and technical assistance on a protocol for further laboratory investigations into the distribution of infectivity of Atypical Bovine Spongiform Encephalopathy (BSE).

 

The European Union Reference Laboratory (EURL) for Transmissible Spongifom Encephalopathies (TSEs) conducted experiments (referred to as the EURL study) that resulted in the collection and storage of reference material originating from cattle experimentally infected with Atypical BSE (H-BSE and L-BSE). With the intention to generate relevant data that could inform further policy options regarding BSE, in particular as regards rules on specified risk material (SRM), DG SANCO wished to explore the possibility to submit these tissue samples to further investigations. EFSA was therefore asked to propose a laboratory protocol to perform new studies aimed at investigating the presence, distribution and relative level of infectivity of Atypical BSE (H-BSE and L-BSE). EFSA was also expected to reflect on whether the tissues available from the EURL study are sufficient for the purpose and/or suggest that investigations on other tissues might be possibly needed.

 

Data relating to the prevalence and geographical distribution of Atypical BSE in the European Union (EU) are incomplete and subject to variation owing to the ongoing retrospective typing of BSE cases. So far, 80 cases of Atypical BSE have been reported by EU Member States from 2001 to 2014. All Atypical BSE cases have been detected by active surveillance, typically in animals over eight years of age, with a similar number of cases detected each year.

 

This report provides an overview of the biological material collected from field cases of Atypical BSE and transmission studies, both in the framework of the EURL study and additional published scientific studies. It was concluded that information on the pathogenesis and tissue distribution of Atypical BSE in cattle through the study of field cases and experimental transmission studies is lacking. The latter are limited to transmission of Atypical BSE through intracerebral (i.c.) inoculation of cattle. Where data exist from both field cases and experimental animals (i.e. for L-BSE only), there is good agreement of the data with regard to abnormal PrP distribution. There are no data for field case H-BSE. All data currently available relate to the presence or absence of PrPSc, but do not quantify relative amounts of PrPSc or levels of infectivity.

 

Approaches to quantify Atypical BSE prions in cattle tissues are described and reviewed, including bioassay and in vitro methods.

 

A laboratory protocol for further studies is recommended. Its application would provide elements allowing the assessment of the relative infectious titre, PrPSc accumulation and prion seeding activity in the tissues of cattle that developed H-BSE or L-BSE (using posterior brainstem as a reference). Tissues to be covered by those studies were categorised in three priorities, based on their inclusion in the cattle SRM list, on the presence of infectivity, or PrPSc presence, demonstrated in Atypical BSEs or other TSEs in ruminants, and on the importance in terms of input into the food chain in the EU. The protocol provides details in terms of the minimum number of animals to be tested, processing and preparation of tissues, and methods to be used to identify abnormal PrP and quantify infectivity, also depending on the expected level of infectivity and amount of tissue available for analysis.

 

Applying the protocol only to the tissues obtained through the EURL study would provide information on some but not all the tissues from the cattle SRM list. It would also provide information on some additional tissues not included in the cattle SRM list, but relevant for the food chain. Material from other studies could be used to augment the range of SRM and non-SRM tissues available. It is acknowledged that there is no identified source able to provide all the samples necessary to assess infectivity in tissues belonging to the full cattle SRM list in H- and L-BSE-infected animals, and therefore, to complete this objective, new inoculation experiments with H- and L-BSE agents in cattle would have to be considered. Recommendations on general principles for such new experiments are provided.

 

In accordance with former EFSA recommendations, it is recommended that, through the implementation of the protocol, information should also be obtained on the performance of currently validated rapid tests for TSE active surveillance in cattle/bioassay for detecting H-BSE and L-BSE agents.

 

Keywords Atypical BSE, cattle, H-BSE, L-BSE, laboratory protocol, prion

 


 

SCIENTIFIC REPORT OF EFSA

 

Protocol for further laboratory investigations into the distribution of infectivity of Atypical BSE1

 

European Food Safety Authority2,3

 

European Food Safety Authority (EFSA), Parma, Italy

 

ABSTRACT

 

Information on the pathogenesis and tissue distribution of Atypical Bovine Spongiform Encephalopathy (BSE) in cattle through the study of field cases and experimental transmission studies is lacking. The latter are limited to transmission of Atypical BSE through intracerebral (i.c.) inoculation of cattle. All data currently available relate to the presence or absence of PrPSc, but do not quantify relative amounts of PrPSc or levels of infectivity. A laboratory protocol for further studies is recommended, to allow the assessment of the relative infectious titre, PrPSc accumulation and prion seeding activity in the tissues of cattle that developed H-BSE or L-BSE (using posterior brainstem as a reference). Tissues to be covered by those studies are categorised in three priorities, based on their inclusion in the list of specific risk material in cattle, on the presence of infectivity, or PrPSc presence, demonstrated in Atypical BSEs or other Transmissible Spongiform Encephalopathies (TSEs) in ruminants, and on the importance in terms of input into the food chain in the EU. The protocol provides details in terms of the minimum number of animals to be tested, processing and preparation of tissues, and methods to be used to identify abnormal PrP and quantify infectivity, also depending on the expected level of infectivity and amount of tissue available for analysis. It is recommended that, through the implementation of the protocol, information should also be obtained on the performance of currently validated rapid tests for TSE active surveillance in cattle/bioassay for detecting H-BSE and L-BSE agents.

 

© European Food Safety Authority, 2014

 

KEY WORDS

 

Atypical BSE, cattle, H-BSE, L-BSE, laboratory protocol, prion

 


 

"BSE" - ATYPICAL LESION DISTRIBUTION __ (RBSE 92/21367)

 

A 6 year old, home bred (HB), Friesian x Holstein cow in a dairy herd in Aberdeenshire, submitted as a suspect BSE case in the negative study (SE0203), has been diagnosed as BSE negative on standard, statutory (obex only), diagnostic criteria at CVL.

 

Further examination by Dr Jeffrey at Lasswade, as required by the project design, has revealed vacuolar change in the septal nucleus and putamen which co-Iocalised with PrP immunoreactivity. No significant lesions were found in any other part of the brain, neither was PrP found in the medulla.

 

It is important to note that examination of four brain blocks used earlier in the epidemic would not have detected the lesion but a 16 block study (as used in the very early days of BSE) would.

 

FURTHER INFORMATION

 

1. The herd of origin has had 15, HB, suspect cases of BSE since July 1989 and a further case is still alive.

 

2. Of the 15, eight have been confirmed by standard histopathology and seven diagnosed negative (including the above case).

 

3. Fixed brain tissue from the negative cases exists at Lasswade (because they always collect whole brain in Scotland) but has not so far been examined further. No frozen tissue was collected so neither SAF nor PrP detection (by immunoblotting) has been attempted.

 

4. Mr Wells agrees with Dr Jeffrey's and Dr Simmons' findings.

 

FURTHER ACTION IN PROGRESS

 

1. The brain tissue from the negative cases will be examined in detail by conventional histopathology and ICC.

 

2. Kevin Taylor and his veterinary colleagues have been alerted to the situation.

 

OTHER RECOMMENDED ACTIONS

 

TRANSMISSION Attempt transmission from the 'case’ to standard mice strains. (Note: In regard to strain typing, formalin may have modified strain phenotype - we need to discuss with NPU). Further transmission studies (eg in cattle) might be suggested if primary transmission in mice fails. These proposals have funding implications.

 

93/2.17/1.1

 

PrP GENOTYPING-AIthough only fixed brain tissue is available we are considering genotyping from parents/offspring/fixed brain. As a first step we are attempting to extract DNA from the fixed brain and to amplify the PrP gene by PCR.

 

3. John Wilesmith has interrogated the data base for the herd history. Other than the high proportion of negative cases nothing significant is apparent.

 

4. Familial relationships between suspect (including all positive and negative) cases in this herd could be examined and tracings of breeding animals initiated.

 

5. Consideration might be given to collecting frozen spinal cord from new cases in this herd or in dispersals from it (for SAF /PrP examination).

 

CONCLUSIONS

 

1. At present it is unclear whether or not this is a singleton incident or whether the other negative cases in this herd show a similar lesion.

 

2. The discovery might indicate the existence of a different strain of BSE from that present in the general epidemic or an unusual response by an individual host.

 

3. If further atypical lesion distribution cases are revealed in this herd then implications of misdiagnosis of 'negative' cases in other herds may not be insignificant.

 

4. If this is a new strain all the implications need to be considered including whether or not to proceed with the further investigation of future cases negative for BSE on obex examination alone and from which whole brains are available (as in Scotland) or collected in the future. Also perhaps investigation of the tissue distribution of infectivity in these animals might be considered.

 

5. Animal and public health controls in place should be sufficient since all tissues (other than brain for diagnosis) are incinerated.

 

We observe that Dr. Tyrrell would wish to be informed of this at an early opportunity and that the SEAC would wish to discuss it at their meeting in April.

 

R BRADLEY M DAWSON 17 February 1993

 

CVO – for information and comment on further action please

 

cc Mr K C Taylor Dr B J Shreeve

 

93/2.17/1.2

 

This minute is re-issued with a wider distribution. The information contained herein should be disseminated furhter except on the basis of ‘’need to know’’.

 

R BRADLEY 9 March 1993

 

Mr JM Scudamore Mr RC Lowson Dr D Mattews Mr I Robertson Dr K MacOwan Mr C Randall Mr J W Wilesmith Mr GAH Wells Dr M Jeffrey Dr. M Simmons

 

93/2.17/1.3

 


 

USDA 2003 We have to be careful that we don't get so set in the way we do things that we forget to look for different emerging variations of disease. We've gotten away from collecting the whole brain in our systems. We're using the brain stem and we're looking in only one area. In Norway, they were doing a project and looking at cases of Scrapie, and they found this where they did not find lesions or PRP in the area of the obex. They found it in the cerebellum and the cerebrum. It's a good lesson for us. Ames had to go back and change the procedure for looking at Scrapie samples. In the USDA, we had routinely looked at all the sections of the brain, and then we got away from it. They've recently gone back. Dr. Keller: Tissues are routinely tested, based on which tissue provides an 'official' test result as recognized by APHIS.

 

Dr. Detwiler: That's on the slaughter. But on the clinical cases, aren't they still asking for the brain? But even on the slaughter, they're looking only at the brainstem. We may be missing certain things if we confine ourselves to one area.

 

snip.............

 

Dr. Detwiler: It seems a good idea, but I'm not aware of it. Another important thing to get across to the public is that the negatives do not guarantee absence of infectivity. The animal could be early in the disease and the incubation period. Even sample collection is so important. If you're not collecting the right area of the brain in sheep, or if collecting lymphoreticular tissue, and you don't get a good biopsy, you could miss the area with the PRP in it and come up with a negative test. There's a new, unusual form of Scrapie that's been detected in Norway. We have to be careful that we don't get so set in the way we do things that we forget to look for different emerging variations of disease. We've gotten away from collecting the whole brain in our systems. We're using the brain stem and we're looking in only one area. In Norway, they were doing a project and looking at cases of Scrapie, and they found this where they did not find lesions or PRP in the area of the obex. They found it in the cerebellum and the cerebrum. It's a good lesson for us. Ames had to go back and change the procedure for looking at Scrapie samples. In the USDA, we had routinely looked at all the sections of the brain, and then we got away from it. They've recently gone back.

 

Dr. Keller: Tissues are routinely tested, based on which tissue provides an 'official' test result as recognized by APHIS .

 

Dr. Detwiler: That's on the slaughter. But on the clinical cases, aren't they still asking for the brain? But even on the slaughter, they're looking only at the brainstem. We may be missing certain things if we confine ourselves to one area.

 

snip...

 

FULL TEXT;

 

Completely Edited Version PRION ROUNDTABLE

 

Accomplished this day, Wednesday, December 11, 2003, Denver, Colorado

 

END...TSS

 

Thursday, May 02, 2013

 

*** Chronic Wasting Disease (CWD) Texas Important Update on OBEX ONLY TEXTING ***

 


 

Transmissible Spongiform Encephalopathy TSE Prion Disease North America 2014

 

Transmissible Spongiform Encephalopathy TSE Prion Disease have now been discovered in a wide verity of species across North America. typical C-BSE, atypical L-type BASE BSE, atypical H-type BSE, atypical H-G BSE, of the bovine, typical and atypical Scrapie strains, in sheep and goats, with atypical Nor-98 Scrapie spreading coast to coast in about 5 years. Chronic Wasting Disease CWD in cervid is slowly spreading without any stopping it in Canada and the USA and now has mutated into many different strains. Transmissible Mink Encephalopathy TME outbreaks. These Transmissible Spongiform Encephalopathy TSE Prion Disease have been silently mutating and spreading in different species in North America for decades.

 

The USDA, FDA, et al have assured us of a robust Triple BSE TSE prion Firewall, of which we now know without a doubt, that it was nothing but ink on paper. Since the 1997 mad cow feed ban in the USA, literally tons and tons of banned mad cow feed has been put out into commerce, never to return, as late as December of 2013, serious, serious breaches in the FDA mad cow feed ban have been documented. The 2004 enhanced BSE surveillance program was so flawed, that one of the top TSE prion Scientist for the CDC, Dr. Paul Brown stated ; Brown, who is preparing a scientific paper based on the latest two mad cow cases to estimate the maximum number of infected cows that occurred in the United States, said he has "absolutely no confidence in USDA tests before one year ago" because of the agency's reluctance to retest the Texas cow that initially tested positive. see ; http://www.upi.com/Health_News/2006/03/15/Analysis-What-that-mad-cow-means/UPI-12841142465253/

 

The BSE surveillance and testing have also been proven to be flawed, and the GAO and OIG have both raised serious question as to just how flawed it has been (see GAO and OIG reports). North America has more documented TSE prion disease, in different documented species (excluding the Zoo BSE animals in the EU), then any other place on the Globe. This does not include the very likelihood that TSE prion disease in the domestic feline and canine have been exposed to high doses of the TSE prion disease vid pet food. To date, it’s still legal to include deer from cwd zone into pet food or deer food. Specified Risk Material i.e. SRM bans still being breach, as recently as just last month.

 

nvCJD or what they now call vCJD, another case documented in Texas last month, with very little information being released to the public on about this case? with still the same line of thought from federal officials, ‘it can’t happen here’, so another vCJD blamed on travel of a foreign animal disease from another country, while ignoring all the BSE TSE Prion risk factors we have here in the USA and Canada, and the time that this victim and others, do spend in the USA, and exposed to these risk factors, apparently do not count in any way with regard to risk factor. a flawed process of risk assessment.

 

sporadic CJD, along with new TSE prion disease in humans, of which the young are dying, of which long duration of illness from onset of symptoms to death have been documented, only to have a new name added to the pot of prion disease i.e. sporadic GSS, sporadic FFI, and or VPSPR. I only ponder how a familial type disease could be sporadic with no genetic link to any family member? when the USA is the only documented Country in the world to have documented two different cases of atypical H-type BSE, with one case being called atypical H-G BSE with the G meaning Genetic, with new science now showing that indeed atypical H-type BSE is very possible transmitted to cattle via oral transmission (Prion2014). sporadic CJD and VPSPR have been rising in Canada, USA, and the UK, with the same old excuse, better surveillance. You can only use that excuse for so many years, for so many decades, until one must conclude that CJD TSE prion cases are rising. a 48% incease in CJD in Canada is not just a blip or a reason of better surveillance, it is a mathematical rise in numbers. More and more we are seeing more humans exposed in various circumstance in the Hospital, Medical, Surgical arenas to the TSE Prion disease, and at the same time in North America, more and more humans are becoming exposed to the TSE prion disease via consumption of the TSE prion via deer and elk, cattle, sheep and goats, and for those that are exposed via or consumption, go on to further expose many others via the iatrogenic modes of transmission of the TSE prion disease i.e. friendly fire. I pondered this mode of transmission via the victims of sporadic FFI, sporadic GSS, could this be a iatrogenic event from someone sub-clinical with sFFI or sGSS ? what if?

 

Two decades have passed since Dr. Ironside first confirmed his first ten nvCJD victims in 1995. Ten years later, 2005, we had Dr. Gambetti and his first ten i.e. VPSPR in younger victims. now we know that indeed VPSPR is transmissible. yet all these TSE prion disease and victims in the USA and Canada are being pawned off as a spontaneous event, yet science has shown, the spontaneous theory has never been proven in any natural case of TSE prion disease, and scientist have warned, that they have now linked some sporadic CJD cases to atypical BSE, to atypical Scrapie, and to CWD, yet we don’t here about this in the public domain. We must make all human and animal TSE prion disease reportable in every age group, in ever state and internationally, we must have a serious re-evaluation and testing of the USA cattle herds, and we must ban interstate movement of all cervids. Any voluntary effort to do any of this will fail. Folks, we have let the industry run science far too long with regards to the TSE prion disease. While the industry and their lobbyist continues to funnel junk science to our decision policy makers, Rome burns. ...end

 

REFERENCES

 

[all scientific peer review studies and other scientific information I have put into blogs, to shorten reference data. I DO NOT advertise or make money from this, this information is for education use...lost my mom to the hvCJD, and just made a promise, never forget, and never let them forget. ...TSS]

 

Saturday, June 14, 2014

 

Rep. Rosa DeLauro (D-CT) Calls for Briefing on Beef Recalled for Mad Cow Potential Rep. Rosa DeLauro (D-CT)

 


 

Thursday, June 12, 2014

 

Missouri Firm Recalls Ribeye and Carcass Products That May Contain Specified Risk Materials 4,012 pounds of fresh beef products because the dorsal root ganglia may not have been completely removed

 


 

Monday, June 02, 2014

 

Confirmed Human BSE aka mad cow Variant CJD vCJD or nvCJD Case in Texas

 


 

Monday, June 9, 2014

 

TEXAS MAD COW COVER UP (human BSE) AGAIN IN TEXAS, Mr. President Sir, we need your help please

 


 

snip...see much more here ;

 

Sunday, June 29, 2014

 

Transmissible Spongiform Encephalopathy TSE Prion Disease North America 2014

 


 

Wednesday, July 23, 2014

 

After the storm? UK blood safety and the risk of variant Creutzfeldt-Jakob Disease

 


 

Thursday, July 24, 2014

 

Government must do more to reduce risk of vCJD infection

 


 

Monday, June 02, 2014

 

Confirmed Variant CJD Case in Texas

 


 

 Saturday, February 01, 2014

 

*** vCJD With Extremely Low Lymphoreticular Deposition of Prion Protein MAY NOT HAVE BEEN DETECTABLE

 


 

Wednesday, December 11, 2013

 

*** Detection of Infectivity in Blood of Persons with Variant and Sporadic Creutzfeldt-Jakob Disease ***

 


 

Sunday, March 09, 2014

 

*** A Creutzfeldt-Jakob Disease (CJD) Lookback Study: Assessing the Risk of Blood Borne Transmission of Classic Forms of Creutzfeldt-Jakob Disease

 

FDA TSEAC CIRCUS AND TRAVELING ROAD SHOW FOR THE TSE PRION DISEASES

 


 

Thursday, January 2, 2014

 

*** CWD TSE Prion in cervids to hTGmice, Heidenhain Variant Creutzfeldt-Jacob Disease MM1 genotype, and iatrogenic CJD ??? ***

 


 

Thursday, February 20, 2014

 

*** Unnecessary precautions BSE MAD COW DISEASE Dr. William James FSIS VS Dr. Linda Detwiler 2014

 


 

Sunday, July 06, 2014

 

Dietary Risk Factors for Sporadic Creutzfeldt-Jakob Disease: A Confirmatory Case-Control Study

 

Conclusions—The a priori hypotheses were supported.

 

*Consumption of various meat products may be one method of transmission of the infectious agent for sCJD.

 


 

***P.170: Potential detection of oral transmission of H type atypical BSE in cattle using in vitro conversion

 

Sandor Dudas, John G Gray, Renee Clark, and Stefanie Czub Canadian Food Inspection Agency; Lethbridge, AB Canada

 

Keywords: Atypical BSE, oral transmission, RT-QuIC

 

The detection of bovine spongiform encephalopathy (BSE) has had a significant negative impact on the cattle industry worldwide. In response, governments took actions to prevent transmission and additional threats to animal health and food safety. While these measures seem to be effective for controlling classical BSE, the more recently discovered atypical BSE has presented a new challenge. To generate data for risk assessment and control measures, we have challenged cattle orally with atypical BSE to determine transmissibility and mis-folded prion (PrPSc) tissue distribution. Upon presentation of clinical symptoms, animals were euthanized and tested for characteristic histopathological changes as well as PrPSc deposition.

 

The H-type challenged animal displayed vacuolation exclusively in rostral brain areas but the L-type challenged animal showed no evidence thereof. To our surprise, neither of the animals euthanized, which were displaying clinical signs indicative of BSE, showed conclusive mis-folded prion accumulation in the brain or gut using standard molecular or immunohistochemical assays. To confirm presence or absence of prion infectivity, we employed an optimized real-time quaking induced conversion (RT-QuIC) assay developed at the Rocky Mountain Laboratory, Hamilton, USA.

 

Detection of PrPSc was unsuccessful for brain samples tests from the orally inoculated L type animal using the RT-QuIC. It is possible that these negative results were related to the tissue sampling locations or that type specific optimization is needed to detect PrPSc in this animal. We were however able to consistently detect the presence of mis-folded prions in the brain of the H-type inoculated animal. Considering the negative and inconclusive results with other PrPSc detection methods, positive results using the optimized RT-QuIC suggests the method is extremely sensitive for H-type BSE detection. This may be evidence of the first successful oral transmission of H type atypical BSE in cattle and additional investigation of samples from these animals are ongoing.

 

Monday, June 23, 2014

 

PRION 2014 TYPICAL AND ATYPICAL BSE AND CJD REPORT UPDATES

 


 

Friday, March 09, 2012

 

Experimental H-type and L-type bovine spongiform encephalopathy in cattle: observation of two clinical syndromes and diagnostic challenges

 

Research article

 


 

Thursday, June 23, 2011

 

Experimental H-type bovine spongiform encephalopathy characterized by plaques and glial- and stellate-type prion protein deposits

 


 

Thursday, June 21, 2012

 

Clinical and Pathologic Features of H-Type Bovine Spongiform Encephalopathy Associated with E211K Prion Protein Polymorphism

 


 

Friday, May 9, 2014

 

Distinct Transmissibility Features of TSE Sources Derived from Ruminant Prion Diseases by the Oral Route in a Transgenic Mouse Model (TgOvPrP4) Overexpressing the Ovine Prion Protein

 


 

*** What irks many scientists is the USDA’s April 25 statement that the rare disease is “not generally associated with an animal consuming infected feed.”

 

The USDA’s conclusion is a “gross oversimplification,” said Dr. Paul Brown, one of the world’s experts on this type of disease who retired recently from the National Institutes of Health. "(The agency) has no foundation on which to base that statement.”

 


 

The present study demonstrated successful intraspecies transmission of H-type BSE to cattle and the distribution and immunolabeling patterns of PrPSc in the brain of the H-type BSE-challenged cattle. TSE agent virulence can be minimally defined by oral transmission of different TSE agents (C-type, L-type, and H-type BSE agents) [59]. Oral transmission studies with H-type BSE infected cattle have been initiated and are underway to provide information regarding the extent of similarity in the immunohistochemical and molecular features before and after transmission.

 

In addition, the present data will support risk assessments in some peripheral tissues derived from cattle affected with H-type BSE.

 


 

*** This supports the theory that the importation of BSE contaminated feedstuff is the source of C-type BSE in Canada.

 

*** It also suggests a similar cause or source for atypical BSE in these countries. ***

 

P.9.21

 

Molecular characterization of BSE in Canada

 

Jianmin Yang1, Sandor Dudas2, Catherine Graham2, Markus Czub3, Tim McAllister1, Stefanie Czub1 1Agriculture and Agri-Food Canada Research Centre, Canada; 2National and OIE BSE Reference Laboratory, Canada; 3University of Calgary, Canada

 

Background: Three BSE types (classical and two atypical) have been identified on the basis of molecular characteristics of the misfolded protein associated with the disease. To date, each of these three types have been detected in Canadian cattle. Objectives: This study was conducted to further characterize the 16 Canadian BSE cases based on the biochemical properties of there associated PrPres.

 

Methods: Immuno-reactivity, molecular weight, glycoform profiles and relative proteinase K sensitivity of the PrPres from each of the 16 confirmed Canadian BSE cases was determined using modified Western blot analysis.

 

Results: Fourteen of the 16 Canadian BSE cases were C type, 1 was H type and 1 was L type. The Canadian H and L-type BSE cases exhibited size shifts and changes in glycosylation similar to other atypical BSE cases. PK digestion under mild and stringent conditions revealed a reduced protease resistance of the atypical cases compared to the C-type cases. N terminal- specific antibodies bound to PrPres from H type but not from C or L type. The C-terminal-specific antibodies resulted in a shift in the glycoform profile and detected a fourth band in the Canadian H-type BSE.

 

Discussion: The C, L and H type BSE cases in Canada exhibit molecular characteristics similar to those described for classical and atypical BSE cases from Europe and Japan. *** This supports the theory that the importation of BSE contaminated feedstuff is the source of C-type BSE in Canada. *** It also suggests a similar cause or source for atypical BSE in these countries. ***

 

see page 176 of 201 pages...tss

 


 

*** Singeltary reply ; Molecular, Biochemical and Genetic Characteristics of BSE in Canada Singeltary reply ;

 


 

P.4.23

 

Transmission of atypical BSE in humanized mouse models

 

Liuting Qing1, Wenquan Zou1, Cristina Casalone2, Martin Groschup3, Miroslaw Polak4, Maria Caramelli2, Pierluigi Gambetti1, Juergen Richt5, Qingzhong Kong1 1Case Western Reserve University, USA; 2Instituto Zooprofilattico Sperimentale, Italy; 3Friedrich-Loeffler-Institut, Germany; 4National Veterinary Research Institute, Poland; 5Kansas State University (Previously at USDA National Animal Disease Center), USA

 

Background: Classical BSE is a world-wide prion disease in cattle, and the classical BSE strain (BSE-C) has led to over 200 cases of clinical human infection (variant CJD). Atypical BSE cases have been discovered in three continents since 2004; they include the L-type (also named BASE), the H-type, and the first reported case of naturally occurring BSE with mutated bovine PRNP (termed BSE-M). The public health risks posed by atypical BSE were largely undefined.

 

Objectives: To investigate these atypical BSE types in terms of their transmissibility and phenotypes in humanized mice. Methods: Transgenic mice expressing human PrP were inoculated with several classical (C-type) and atypical (L-, H-, or Mtype) BSE isolates, and the transmission rate, incubation time, characteristics and distribution of PrPSc, symptoms, and histopathology were or will be examined and compared.

 

Results: Sixty percent of BASE-inoculated humanized mice became infected with minimal spongiosis and an average incubation time of 20-22 months, whereas only one of the C-type BSE-inoculated mice developed prion disease after more than 2 years. Protease-resistant PrPSc in BASE-infected humanized Tg mouse brains was biochemically different from bovine BASE or sCJD. PrPSc was also detected in the spleen of 22% of BASE-infected humanized mice, but not in those infected with sCJD. Secondary transmission of BASE in the humanized mice led to a small reduction in incubation time.*** The atypical BSE-H strain is also transmissible with distinct phenotypes in the humanized mice, but no BSE-M transmission has been observed so far.

 

Discussion: Our results demonstrate that BASE is more virulent than classical BSE, has a lymphotropic phenotype, and displays a modest transmission barrier in our humanized mice. BSE-H is also transmissible in our humanized Tg mice. The possibility of more than two atypical BSE strains will be discussed.

 

Supported by NINDS NS052319, NIA AG14359, and NIH AI 77774.

 


 

P26 TRANSMISSION OF ATYPICAL BOVINE SPONGIFORM ENCEPHALOPATHY (BSE) IN HUMANIZED MOUSE MODELS

 

Liuting Qing1, Fusong Chen1, Michael Payne1, Wenquan Zou1, Cristina Casalone2, Martin Groschup3, Miroslaw Polak4, Maria Caramelli2, Pierluigi Gambetti1, Juergen Richt5*, and Qingzhong Kong1 1Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA; 2CEA, Istituto Zooprofilattico Sperimentale, Italy; 3Friedrich-Loeffler-Institut, Germany; 4National Veterinary Research Institute, Poland; 5Kansas State University, Diagnostic Medicine/Pathobiology Department, Manhattan, KS 66506, USA. *Previous address: USDA National Animal Disease Center, Ames, IA 50010, USA

 

Classical BSE is a world-wide prion disease in cattle, and the classical BSE strain (BSE-C) has led to over 200 cases of clinical human infection (variant CJD). Two atypical BSE strains, BSE-L (also named BASE) and BSE-H, have been discovered in three continents since 2004. The first case of naturally occurring BSE with mutated bovine PrP gene (termed BSE-M) was also found in 2006 in the USA. The transmissibility and phenotypes of these atypical BSE strains/isolates in humans were unknown. We have inoculated humanized transgenic mice with classical and atypical BSE strains (BSE-C, BSE-L, BSE-H) and the BSE-M isolate. We have found that the atypical BSE-L strain is much more virulent than the classical BSE-C. *** The atypical BSE-H strain is also transmissible in the humanized transgenic mice with distinct phenotype, but no transmission has been observed for the BSE-M isolate so far.

 

III International Symposium on THE NEW PRION BIOLOGY: BASIC SCIENCE, DIAGNOSIS AND THERAPY 2 - 4 APRIL 2009, VENEZIA (ITALY)

 


 

UPDATE

 

I ask Professor Kong ; Thursday, December 04, 2008 3:37 PM

 

Subject: RE: re--Chronic Wating Disease (CWD) and Bovine Spongiform Encephalopathies (BSE): Public Health Risk Assessment

 

''IS the h-BSE more virulent than typical BSE as well, or the same as cBSE, or less virulent than cBSE? just curious.....''

 

Professor Kong reply ;

 

.....snip

 

''As to the H-BSE, we do not have sufficient data to say one way or another, but we have found that H-BSE can infect humans. I hope we could publish these data once the study is complete. Thanks for your interest.''

 

Best regards, Qingzhong Kong, PhD Associate Professor Department of Pathology Case Western Reserve University Cleveland, OH 44106 USA END...TSS

 

Thursday, December 04, 2008 2:37 PM

 

"we have found that H-BSE can infect humans."

 

personal communication with Professor Kong. ...TSS

 

BSE-H is also transmissible in our humanized Tg mice. The possibility of more than two atypical BSE strains will be discussed.

 

Supported by NINDS NS052319, NIA AG14359, and NIH AI 77774.

 


 


 

please see below from PRION2013 ;

 

*** This study imply the possibility that the novel BSE prions with high virulence in cattle will be emerged during intraspecies transmission.

 

AD.56: The emergence of novel BSE prions by serial passages of H-type BSE in bovinized mice

 

Kentaro Masujin, Naoko Tabeta, Ritsuko Miwa, Kohtaro Miyazawa, Hiroyuki Okada, Shirou Mohri and Takashi Yokoyama National Institute of Animal Health; Tsukuba, Japan

 

H-type bovine spongiform encephalopathy (BSE) is an atypical form of BSE, and has been detected in several European countries, and North America. Transmission studies of H-type BSE led to the emergence of the classical BSE (C-BSE) phenotypes during passages in inbred wild type and bovinized PrP-overexpressing transgenic mice. In this study, we conducted serial passages of Canadian H-type BSE isolate in bovinized PrP-overexpressing transgenic mice (TgBoPrP). H-type BSE isolate was transmitted to TgBoPrP with incubation periods of 320 ± 12.2 d at primary passage. The incubation period of 2nd and 3rd passage were constant (~= 220 d), no clear differences were observed in their biological and biochemical properties. However, at the forth passage, 2 different BSE phenotypes were confirmed; one is shorter survival times (109 ± 4 d) and the other is longer survival times. TgBoPrP mice with longer incubation period showed the H-type phenotype of PrPsc profile and pathology. However, those of shorter incubation period were different phenotypes from previously existed BSE prions (C-BSE, L-type BSE, and H-type BSE).

 

*** This study imply the possibility that the novel BSE prions with high virulence in cattle will be emerged during intraspecies transmission.

 


 

www.landesbioscience.com

 

please see ;

 

Thursday, August 15, 2013

 

The emergence of novel BSE prions by serial passages of H-type BSE in bovinized mice

 


 

LET'S take a closer look at this new prionpathy or prionopathy, and then let's look at the g-h-BSEalabama mad cow. This new prionopathy in humans? the genetic makeup is IDENTICAL to the g-h-BSEalabama mad cow, the only _documented_ mad cow in the world to date like this, ......wait, it get's better. this new prionpathy is killing young and old humans, with LONG DURATION from onset of symptoms to death, and the symptoms are very similar to nvCJD victims, OH, and the plaques are very similar in some cases too, bbbut, it's not related to the g-h-BSEalabama cow, WAIT NOW, it gets even better, the new human prionpathy that they claim is a genetic TSE, has no relation to any gene mutation in that family. daaa, ya think it could be related to that mad cow with the same genetic make-up ??? there were literally tons and tons of banned mad cow protein in Alabama in commerce, and none of it transmitted to cows, and the cows to humans there from ??? r i g h t $$$ ALABAMA MAD COW g-h-BSEalabama In this study, we identified a novel mutation in the bovine prion protein gene (Prnp), called E211K, of a confirmed BSE positive cow from Alabama, United States of America. This mutation is identical to the E200K pathogenic mutation found in humans with a genetic form of CJD. This finding represents the first report of a confirmed case of BSE with a potential pathogenic mutation within the bovine Prnp gene. We hypothesize that the bovine Prnp E211K mutation most likely has caused BSE in "the approximately 10-year-old cow" carrying the E221K mutation.

 


 

Saturday, August 14, 2010

 

BSE Case Associated with Prion Protein Gene Mutation (g-h-BSEalabama) and VPSPr PRIONPATHY (see mad cow feed in COMMERCE IN ALABAMA...TSS)

 


 

her healthy calf also carried the mutation

 

(J. A. Richt and S. M. Hall PLoS Pathog. 4, e1000156; 2008).

 

This raises the possibility that the disease could occasionally be genetic in origin. Indeed, the report of the UK BSE Inquiry in 2000 suggested that the UK epidemic had most likely originated from such a mutation and argued against the scrapierelated assumption. Such rare potential pathogenic PRNP mutations could occur in countries at present considered to be free of BSE, such as Australia and New Zealand. So it is important to maintain strict surveillance for BSE in cattle, with rigorous enforcement of the ruminant feed ban (many countries still feed ruminant proteins to pigs). Removal of specified risk material, such as brain and spinal cord, from cattle at slaughter prevents infected material from entering the human food chain. Routine genetic screening of cattle for PRNP mutations, which is now available, could provide additional data on the risk to the public. Because the point mutation identified in the Alabama animals is identical to that responsible for the commonest type of familial (genetic) CJD in humans, it is possible that the resulting infective prion protein might cross the bovine-human species barrier more easily. Patients with vCJD continue to be identified. The fact that this is happening less often should not lead to relaxation of the controls necessary to prevent future outbreaks.

 

Malcolm A. Ferguson-Smith Cambridge University Department of Veterinary Medicine, Madingley Road, Cambridge CB3 0ES, UK e-mail: maf12@cam.ac.uk Jürgen A. Richt College of Veterinary Medicine, Kansas State University, K224B Mosier Hall, Manhattan, Kansas 66506-5601, USA NATURE|Vol 457|26 February 2009

 


 

Owens, Julie

 

From: Terry S. Singeltary Sr. [flounder9@verizon.net]

 

Sent: Monday, July 24, 2006 1:09 PM

 

To: FSIS RegulationsComments

 

Subject: [Docket No. FSIS-2006-0011] FSIS Harvard Risk Assessment of Bovine Spongiform Encephalopathy (BSE) Page 1 of 98

 


 

FSIS, USDA, REPLY TO SINGELTARY

 


 

Wednesday, January 01, 2014

 

Molecular Barriers to Zoonotic Transmission of Prions

 

*** chronic wasting disease, there was no absolute barrier to conversion of the human prion protein.

 

*** Furthermore, the form of human PrPres produced in this in vitro assay when seeded with CWD, resembles that found in the most common human prion disease, namely sCJD of the MM1 subtype.

 


 


 

Thursday, August 12, 2010

 

Seven main threats for the future linked to prions

 

First threat

 

The TSE road map defining the evolution of European policy for protection against prion diseases is based on a certain numbers of hypotheses some of which may turn out to be erroneous. In particular, a form of BSE (called atypical Bovine Spongiform Encephalopathy), recently identified by systematic testing in aged cattle without clinical signs, may be the origin of classical BSE and thus potentially constitute a reservoir, which may be impossible to eradicate if a sporadic origin is confirmed.

 

***Also, a link is suspected between atypical BSE and some apparently sporadic cases of Creutzfeldt-Jakob disease in humans. These atypical BSE cases constitute an unforeseen first threat that could sharply modify the European approach to prion diseases.

 

Second threat

 

snip...

 


 

EFSA Journal 2011 The European Response to BSE: A Success Story

 

This is an interesting editorial about the Mad Cow Disease debacle, and it's ramifications that will continue to play out for decades to come ;

 

Monday, October 10, 2011

 

EFSA Journal 2011 The European Response to BSE: A Success Story

 

snip...

 

EFSA and the European Centre for Disease Prevention and Control (ECDC) recently delivered a scientific opinion on any possible epidemiological or molecular association between TSEs in animals and humans (EFSA Panel on Biological Hazards (BIOHAZ) and ECDC, 2011). This opinion confirmed Classical BSE prions as the only TSE agents demonstrated to be zoonotic so far ***but the possibility that a small proportion of human cases so far classified as "sporadic" CJD are of zoonotic origin could not be excluded. Moreover, transmission experiments to non-human primates suggest that some TSE agents in addition to Classical BSE prions in cattle (namely L-type Atypical BSE, Classical BSE in sheep, transmissible mink encephalopathy (TME) and chronic wasting disease (CWD) agents) might have zoonotic potential.

 

snip...

 


 


 

see follow-up here about North America BSE Mad Cow TSE prion risk factors, and the ever emerging strains of Transmissible Spongiform Encephalopathy in many species here in the USA, including humans ;

 


 

*** 2010-2011 ***

 

When L-type BSE was inoculated into ovine transgenic mice and Syrian hamster the resulting molecular fingerprint had changed, either in the first or a subsequent passage, from L-type into C-type BSE. In addition, non-human primates are specifically susceptible for atypical BSE as demonstrated by an approximately 50% shortened incubation time for L-type BSE as compared to C-type. Considering the current scientific information available, it cannot be assumed that these different BSE types pose the same human health risks as C-type BSE or that these risks are mitigated by the same protective measures.

 

This study will contribute to a correct definition of specified risk material (SRM) in atypical BSE. The incumbent of this position will develop new and transfer existing, ultra-sensitive methods for the detection of atypical BSE in tissue of experimentally infected cattle.

 


 

Monday, September 26, 2011

 

L-BSE BASE prion and atypical sporadic CJD

 

Risk.12:

 

Transmission of Atypical Italian sCJD Case to Humanized Mice Reveals a Novel Infectious Strain

 

Roberta Galeno,1,† Marco Sbriccoli,1 Loredana Ingrosso,1 Silvia Graziano,1 Angelina Valanzano,1 Anna Poleggi,1 Angela De Pascalis,1 Anna Ladogana,1 Franco Cardone,1 Maria Puopolo,1 Gianluigi Zanusso2 and Maurizio Pocchiari1

 

1Istituto Superiore di Sanità; Rome, Italy; 2University of Verona; Verona, Italy†Presenting author; Email: roberta.galeno@iss.it

 

Sporadic Creutzfeldt-Jakob disease (sCJD) is a neurodegenerative prion disorder with uncertain etiology characterized by a typical combination of clinical symptoms, neuropathological lesions, and by the deposition of the pathological protein PrPTSE in the brain.

 

The vast majority of patients affected by sCJD can be categorized according to the genotype at the polymorphic position www.landesbioscience.com Prion 127

 

129 of PrP (methionine or valine) and to the molecular mass of PrPTSE (type 1 or 2, corresponding to 21 or 19 kDa), yielding six possible combinations (MM1, MM2, VV1, VV2, MV1, and MV2) that associate with five clinico-pathological variants. Transmission studies of these sCJD subtypes into transgenic mice expressing the human prion protein allowed to identify four different infectious strains, which can partly explain the heterogeneity observed in sCJD patients.1

 

We recently described a novel molecular and pathological phenotype of sCJD (MV at position 129 of PrP), associated with an unprecedented electrophoretic pattern of PrPTSE characterized by the absence of the highly glycosylated isoform. In this work, we sought to characterize the prion strain associated with this atypical case by intracerebral inoculation into gene-targeted transgenic mice (HuTg) carrying the human PRNP gene with the three 129 genotype combinations. For comparison, three Italian sCJD cases heterozygous at position 129 of the prion protein, belonging to different subtypes (MV1, MV1/2, MV2), were transmitted to the same panel of transgenic mice. Survival times, attack rates, lesion profiles, and molecular analysis of the PrPTSE type recovered from mouse brains injected with the atypical case were compared with data from control animals. Mice inoculated with the atypical case displayed a restricted host tropism, with only a small number of VV animals that resulted PrPTSE-positive after an exceedingly long survival time. Interestingly, PrPTSE accumulated in brains from these mice lacks the diglycosylated band similar to that in sCJD inoculum, yet dissimilar to any other PrPTSE observed in HuTg mice by us and by other authors.1,2 Overall, *** these results strongly indicate that our atypical case associates with a new infectious strain of sCJD. Further investigations are needed to understand the possible connection with other human and animal prion diseases.

 

References

 

1. Bishop MT, Will RG, Manson JC. Defining sporadic Creutzfeldt-Jakob disease strains and their transmission properties. Proc Natl Acad Sci USA 2010; 107:12005-10.

 

2. Bishop MT, Hart P, Aitchison L, Baybutt HN, Plinston C, Thomson V, et al. Predicting susceptibility and incubation time of human-to-human transmission of vCJD. Lancet Neurol 2006; 5:393-8.

 


 

Saturday, June 25, 2011

 

Transmissibility of BSE-L and Cattle-Adapted TME Prion Strain to Cynomolgus Macaque

 

"BSE-L in North America may have existed for decades"

 


 

Sunday, June 26, 2011

 

Risk Analysis of Low-Dose Prion Exposures in Cynomolgus Macaque

 


 

2011 Monday, September 26, 2011

 

L-BSE BASE prion and atypical sporadic CJD

 


 

1: J Infect Dis 1980 Aug;142(2):205-8

 

Oral transmission of kuru, Creutzfeldt-Jakob disease, and scrapie to nonhuman primates.

 

Gibbs CJ Jr, Amyx HL, Bacote A, Masters CL, Gajdusek DC.

 

Kuru and Creutzfeldt-Jakob disease of humans and scrapie disease of sheep and goats were transmitted to squirrel monkeys (Saimiri sciureus) that were exposed to the infectious agents only by their nonforced consumption of known infectious tissues. The asymptomatic incubation period in the one monkey exposed to the virus of kuru was 36 months; that in the two monkeys exposed to the virus of Creutzfeldt-Jakob disease was 23 and 27 months, respectively; and that in the two monkeys exposed to the virus of scrapie was 25 and 32 months, respectively. Careful physical examination of the buccal cavities of all of the monkeys failed to reveal signs or oral lesions. One additional monkey similarly exposed to kuru has remained asymptomatic during the 39 months that it has been under observation.

 

snip...

 

*** The successful transmission of kuru, Creutzfeldt-Jakob disease, and scrapie by natural feeding to squirrel monkeys that we have reported provides further grounds for concern that scrapie-infected meat may occasionally give rise in humans to Creutzfeldt-Jakob disease.

 

PMID: 6997404

 


 

*** The discovery of previously unrecognized prion diseases in both humans and animals (i.e., Nor98 in small ruminants) demonstrates that the range of prion diseases might be wider than expected and raises crucial questions about the epidemiology and strain properties of these new forms. We are investigating this latter issue by molecular and biological comparison of VPSPr, GSS and Nor98.

 


 

Wednesday, March 28, 2012

 

VARIABLY PROTEASE-SENSITVE PRIONOPATHY IS TRANSMISSIBLE, price of prion poker goes up again $

 


 

Saturday, August 14, 2010

 

BSE Case Associated with Prion Protein Gene Mutation (g-h-BSEalabama) and VPSPr PRIONPATHY

 

(see mad cow feed in COMMERCE IN ALABAMA...TSS)

 


 

PRION 2014 CONFERENCE

 

CHRONIC WASTING DISEASE CWD

 

A FEW FINDINGS ;

 

Conclusions. To our knowledge, this is the first established experimental model of CWD in TgSB3985. We found evidence for co-existence or divergence of two CWD strains adapted to Tga20 mice and their replication in TgSB3985 mice. Finally, we observed phenotypic differences between cervid-derived CWD and CWD/Tg20 strains upon propagation in TgSB3985 mice. Further studies are underway to characterize these strains.

 

We conclude that TSE infectivity is likely to survive burial for long time periods with minimal loss of infectivity and limited movement from the original burial site. However PMCA results have shown that there is the potential for rainwater to elute TSE related material from soil which could lead to the contamination of a wider area. These experiments reinforce the importance of risk assessment when disposing of TSE risk materials.

 

The results show that even highly diluted PrPSc can bind efficiently to polypropylene, stainless steel, glass, wood and stone and propagate the conversion of normal prion protein. For in vivo experiments, hamsters were ic injected with implants incubated in 1% 263K-infected brain homogenate. Hamsters, inoculated with 263K-contaminated implants of all groups, developed typical signs of prion disease, whereas control animals inoculated with non-contaminated materials did not.

 

Our data establish that meadow voles are permissive to CWD via peripheral exposure route, suggesting they could serve as an environmental reservoir for CWD. Additionally, our data are consistent with the hypothesis that at least two strains of CWD circulate in naturally-infected cervid populations and provide evidence that meadow voles are a useful tool for CWD strain typing.

 

Conclusion. CWD prions are shed in saliva and urine of infected deer as early as 3 months post infection and throughout the subsequent >1.5 year course of infection. In current work we are examining the relationship of prionemia to excretion and the impact of excreted prion binding to surfaces and particulates in the environment.

 

Conclusion. CWD prions (as inferred by prion seeding activity by RT-QuIC) are shed in urine of infected deer as early as 6 months post inoculation and throughout the subsequent disease course. Further studies are in progress refining the real-time urinary prion assay sensitivity and we are examining more closely the excretion time frame, magnitude, and sample variables in relationship to inoculation route and prionemia in naturally and experimentally CWD-infected cervids.

 

Conclusions. Our results suggested that the odds of infection for CWD is likely controlled by areas that congregate deer thus increasing direct transmission (deer-to-deer interactions) or indirect transmission (deer-to-environment) by sharing or depositing infectious prion proteins in these preferred habitats. Epidemiology of CWD in the eastern U.S. is likely controlled by separate factors than found in the Midwestern and endemic areas for CWD and can assist in performing more efficient surveillance efforts for the region.

 

Conclusions. During the pre-symptomatic stage of CWD infection and throughout the course of disease deer may be shedding multiple LD50 doses per day in their saliva. CWD prion shedding through saliva and excreta may account for the unprecedented spread of this prion disease in nature.

 

see full text and more ;

 

Monday, June 23, 2014

 

*** PRION 2014 CHRONIC WASTING DISEASE CWD

 


 

Thursday, July 03, 2014

 

*** How Chronic Wasting Disease is affecting deer population and what’s the risk to humans and pets?

 


 

Tuesday, July 01, 2014

 

*** CHRONIC WASTING DISEASE CWD TSE PRION DISEASE, GAME FARMS, AND POTENTIAL RISK FACTORS THERE FROM

 


 

***P.170: Potential detection of oral transmission of H type atypical BSE in cattle using in vitro conversion

 

Sandor Dudas, John G Gray, Renee Clark, and Stefanie Czub Canadian Food Inspection Agency; Lethbridge, AB Canada

 

Keywords: Atypical BSE, oral transmission, RT-QuIC

 

The detection of bovine spongiform encephalopathy (BSE) has had a significant negative impact on the cattle industry worldwide. In response, governments took actions to prevent transmission and additional threats to animal health and food safety. While these measures seem to be effective for controlling classical BSE, the more recently discovered atypical BSE has presented a new challenge. To generate data for risk assessment and control measures, we have challenged cattle orally with atypical BSE to determine transmissibility and mis-folded prion (PrPSc) tissue distribution. Upon presentation of clinical symptoms, animals were euthanized and tested for characteristic histopathological changes as well as PrPSc deposition.

 

The H-type challenged animal displayed vacuolation exclusively in rostral brain areas but the L-type challenged animal showed no evidence thereof. To our surprise, neither of the animals euthanized, which were displaying clinical signs indicative of BSE, showed conclusive mis-folded prion accumulation in the brain or gut using standard molecular or immunohistochemical assays. To confirm presence or absence of prion infectivity, we employed an optimized real-time quaking induced conversion (RT-QuIC) assay developed at the Rocky Mountain Laboratory, Hamilton, USA.

 

Detection of PrPSc was unsuccessful for brain samples tests from the orally inoculated L type animal using the RT-QuIC. It is possible that these negative results were related to the tissue sampling locations or that type specific optimization is needed to detect PrPSc in this animal. We were however able to consistently detect the presence of mis-folded prions in the brain of the H-type inoculated animal. Considering the negative and inconclusive results with other PrPSc detection methods, positive results using the optimized RT-QuIC suggests the method is extremely sensitive for H-type BSE detection. This may be evidence of the first successful oral transmission of H type atypical BSE in cattle and additional investigation of samples from these animals are ongoing.

 

P.169: PrPSc distribution in brain areas of a natural German H-type BSE case

 

Anne Balkema-Buschmann, Grit Priemer, Markus Keller, and Martin H Groschup Friedrich Loeffler Institut, Institute for Novel and Emerging Infectious Diseases; Greifswald, Insel Riems, Germany

 

Keywords: BSE H-type, brain, muscle

 

Ten years after the initial description of atypical BSE cases of the H-type and L-type, the distribution of PrPSc in different brain areas and peripheral tissues of natural cases of these BSE forms is still not fully understood. Intracerebral challenge experiments have been performed with both atypical BSE forms in cattle, and the distribution of the abnormal prion protein and infectivity has been analysed in a variety of tissues, confirming the general restriction to the central nervous system as it was already generally acknowledged for classical BSE, but showing a slightly earlier and stronger involvement of the peripheral nervous system and the skeletal muscle. www.landesbioscience.com Prion 105

 

However, data from cattle orally challenged with atypical BSE, which might mimic the natural situation, are not yet available. Unfortunately, for most natural cases of atypical BSE, only the obex region is available for further analysis. The PrPSc distribution in the brains of natural L-type BSE cases in Italy has been described in some detail, but comparably few such data are yet available for natural H-type cases. Here we describe the analysis of different brain areas and muscle samples of a natural H-type BSE case diagnosed in Germany in 2014, and compare these data with those obtained from the respective samples collected from cattle challenged intracerebrally with H-type BSE.

 

P.159: Transgenic mice overexpressing rabbit prion protein are susceptible to BSE, BASE and scrapie prion strains but resistant to CWD and atypical scrapie

 

Natalia Fernández-Borges,1 Enric Vidal,2 Belén Pintado,4 Hasier Eraña,1 Montserrat Ordóñez,3 Mercedes Márquez,5 Francesca Chianini,6 Dolors Fondevila,5 Manuel A Sánchez-Martín,7 Olivier Andréoletti,8 Mark P Dagleish,6 Martí Pumarola,5 and Joaquín Castilla1,3 1CIC bioGUNE; Parque tecnológico de Bizkaia; Derio; Bizkaia, Spain; 2Centre de Recerca en Sanitat Animal (CReSA); UAB-IR TA, Campus de la Universitat Autònoma de Barcelona; Bellaterra; Barcelona, Catalonia, Spain; 3IKERBASQUE; Basque Foundation for Science; Bilbao, Bizkaia, Spain; 4Centro Nacional de Biotecnología (CNB), Campus de Cantoblanco; Cantoblanco; Madrid, Spain; 5Department of Animal Medicine and Surgery; Veterinary faculty; Universitat Autònoma de Barcelona (UAB); Bellaterra (Cerdanyola del Vallès); Barcelona, Catalonia, Spain; 6Moredun Research Institute; Bush Loan, Penicuik, Scotland, UK; 7Unidad de Generación de OMGs. S.E.A. Department of Medicine; University of Salamanca; Salamanca, Spain; 8Ecole Nationale du Veterinaire; Service de Pathologie du Bétail; Toulouse, France

 

Interspecies transmission of prions is a well established phenomenon, both experimentally and in field conditions. Upon passage through new hosts prion strains have proven their capacity to change their properties. It is, in fact, a source of strain diversity which needs to be considered when assessing the potential risks associated with consumption of prion contaminated protein sources.

 

Rabbits were considered for decades a prion resistant species until proven recently otherwise. To determine the extent of rabbit susceptibility to prions and to assess their effects on the passage of different prion strains through this species, a transgenic mouse model overexpressing rabbit PrPC was developed (TgRab). Intracerebral challenges with prion strains originating from a variety of species including field isolates (SSBP1 scrapie, Nor98-like scrapie, BSE, BASE and CWD), experimental murine strains (ME7 and RML), experimentally obtained strains (sheepBSE) and strains obtained by in vitro crossing of the species barrier using saPMCA (BSE-RabPrPres, SSBP1-RabPrPres and CWD-RabPrPres) have been performed.

 

Interestingly, on first passage, TgRab were susceptible to the majority of prions tested with the exception of SSBP1 scrapie, CWD and Nor98 scrapie. Furthermore TgRab were capable of propagating strain-specific features such as differences in incubation periods, brain lesion and PrPd deposition profiles and PK resistant western blotting band patterns. Our results confirm previous studies shattering the myth that rabbits are resistant to prion infection and this should be taken into account when choosing protein sources to feed rabbits.

 

P.168: Evolution of the biological properties of L-BSE after passage in sheep with susceptible and resistant PrP genotypes

 

Michele A Di Bari, Umberto Agrimi, Claudia D’Agostino, Geraldina Riccardi, Stefano Marcon, Elena Esposito, Paolo Frassanito, Flavio Torriani, Shimon Simson, and Romolo Nonno Istituto Superiore di Sanità (ISS) Department of Veterinary Public Health and Food Safety; Rome, Italy

 

Background. Cattle L-BSE was efficiently transmitted to sheep with susceptible (QQ171) and resistant (QR171) PrP genotypes. 1 Notably, the PrPSc signature of L-BSE was preserved in QQ171 sheep but not in QR171 sheep.2 Notwithstanding, bioassay in transgenic mice expressing bovine or ovine (ARQ) PrPC showed that L-BSE strain was preserved in both, QQ171 and QR171 sheep-passaged L-BSE.3

 

Here we studied the biological properties of sheep-passaged L-BSE by bioassay in bank voles and transgenic mice expressing the ovine VRQ PrP (tg338), both characterized by a comparatively low susceptibility to cattle L-BSE.

 

Material and Methods. Voles and tg338 mice were intracerebrally inoculated with cattle L-BSE and sheep-passaged (QQ171 and QR171) L-BSE isolates. Survival time, lesion profiles, Pet-blot and WB analysis were used for strain typing. Results. Cattle L-BSE transmitted quite inefficiently to tg338 mice, with survival time >400 days post-infection (d.p.i.), while sheep-passaged inocula were much more efficient and all gave terminal disease by ~140 d.p.i. However, after sub-passage all inocula converged to a survival time of ~145 d.p.i.. and showed overlapping pathological phenotypes.

 

In voles, cattle L-BSE transmitted with very long survival times (~800 d.p.i.) and was accompanied by an upward shift of the PrPSc type. Again, all sheep-passaged L-BSE isolates transmitted much more efficiently, with similar survival times of ~360 d.p.i.. Upon second passage, three different strains were isolated in vole, characterized by distinct pathological phenotypes. This divergence is epitomized by the different survival times of vole-adapted L-BSE strains, which were ~400 d.p.i. for cattle L-BSE, ~130 d.p.i. for QQ171-passaged L-BSE and ~225 d.p.i. for QR171-passaged L-BSE.

 

Conclusions. These findings, along with previously published data,3 show that the original L-BSE strain was recovered after passage in sheep when bioassay was performed in animal models expressing bovine or ovine PrPC. In contrast, strain changes were observed in both, QQ171- and QR171-passaged L-BSE by bioassay in vole, a species with divergent PrP sequence compared to ruminants. Importantly, QQ171- and QR171-passaged L-BSE were characterised by different PrPSc types and, accordingly, showed different biological properties when transmitted to voles, but not when transmitted to other animal models.

 

Overall, our work support the hypothesis that prion isolates are likely composed of multiple prion components, emphasizes the role of host PrP polymorphisms on strain selection and mutation, and highlights the risk for new potentially zoonotic strains that could emerge from prion evolution in animal reservoirs.

 

P.172: BSE exposure risk from bovine intestine and mesentery

 

Fulvio Barizzone,1 Herbert Budka,2 Christine Fast,3 John N Griffin,4 Giuseppe Ru,5 Pietro Stella1 and Olivier Andréoletti6 1European Food Safety Authority; Parma, Italy; 2Institute of Neuropathology; University Hospital Zurich; Zurich, Switzerland; 3Friedrich-Loeffler-Institut; Institute of Novel and Emerging Infectious Diseases; Isle of Riems, Germany; 4Department of Agriculture, Food and the Marine; Backweston, Celbridge, Co. Kildare, Ireland; 5Istituto Zooprofilattico Sperimentale del Piemonte; Liguria e Valle d’Aosta; Biostatistics Epidemiology and Analysis of Risk (BEAR) unit; Turin, Italy; 6UMR Interactions Hôtes Agents Pathogènes; Ecole Nationale Vétérinaire INR A; ENVT; Toulouse, France

 

Keywords: Bovine Spongiform Encephalopathy (BSE), cattle, intestine, mesentery, specified risk material (SRM), quantitative risk assessment (QRA)

 

Bovine intestines and mesenteries in the European Union (EU) are considered among the tissues potentially containing the highest level of BSE infectivity and have to be removed from the food and feed chain. A quantitative assessment of the BSE infectious load potentially entering the food and feed chain yearly in the European Union (EU) was developed. The evolution of the BSE infectious titre and of the weight of the structures accumulating infectivity was considered. The number of BSE infected cattle entering undetected in the food and feed chain yearly was estimated. A model (TSEi) was developed to estimates the evolution of the BSE infectious load in animals and the total yearly infectious load that could enter the food and feed chain. In a BSE infected bovine, the distribution of infectivity in intestines and mesentery varies with the age. Up to 36 months of age the infectivity is mainly associated (on average more than 90%) with the last 4 metres of small intestine and the caecum, over 36 and under 60 months of age, there is an inter-individual variability, from 60 months of age the infectivity is mainly associated (on average more than 90%) with the mesenteric nerves and the celiac and mesenteric ganglion complex. The total amount of infectivity peaks, about 15 BoID50, in animals younger than 18 months, it declines to 8-9 BoID50 (24–48 months of age) and it drops to 0.7 BoID50 in animals older than 60 months. The ileocaecal plate is the most infectious part of the intestine and it can be used to estimate the potential maximum level of exposure for an individual consumer.

 

In the EU, between 2007 and 2012, the yearly amount of BSE infectivity associated with intestine and mesentery from animals entering the food and feed chain was reduced by a factor of 10 (from about 23,000 to about 2,000 BoID50).

 

However, the maximum level of exposure to the BSE agent from intestine remained stable (on average about 1.5-1.6 BoID50 per meter).

 

In case of re-emergence of BSE in the EU there would be an increase of the potential maximum level of exposure to BSE from intestine. According to the TSEi model the removal of the last four metres of the small intestine and of the caecum from the food and feed chain would result in a major reduction of the BSE exposure risk associated with intestine and mesentery in cattle.

 

P.131: Transmission of sheep-bovine spongiform encephalopathy in pigs

 

Carlos Hedman,1 Belén Marín,1 Fabian Corbière,3 Hicham Filali,1 Francisco Vázquez, José Luis Pitarch,1 William Jirón,1 Rodrigo S Hernandez,1 Bernardino Moreno,1 Martí Pumarola,2 Olivier Andréoletti,3 Juan José Badiola,1 and Rosa Bolea1 1University of Zaragoza; Zaragoza, Spain; 2University of Barcelona; Barcelona, Spain; 3Institut National de la Recherche (INR A); Toulouse, France

 

Introduction. The transmissible spongiform encephalopathies (TSE) don´t occur in swine in natural conditions. However, the bovine spongiform encephalopathy (BSE) agent, inoculated by 3 simultaneous routes in pigs, is able to reproduce a neurological disease in these animals. On the other hand, the BSE agent after passage in sheep under experimental conditions (sheep- BSE) exhibits altered pathobiologic properties. This new agent is able to cross the cattle-pig transmission barrier more efficiently than BSE. The potential propagation of TSE in animals from the human food chain, including pigs, needs to be assessed regarding the risk for human infection by animals other than TSE-infected ruminants. The aim of this work was to determine the susceptibility of pigs to the Sheep-BSE agent and describe the pathological findings and PrPSc deposition in different tissues.

 

Material and Methods. Seven minipigs were challenged intracerebrally with sheep-BSE agent. Clinical observation and postmortem histopathology, immunohistochemistry (antibody 2G11) and Western blotting were performed on central nervous system (CNS), peripheral nervous system (PNS) and other tissues.

 

Results. One pig was culled in an early incubation stage, and remaining six were culled at the presence of clinical sings. Pigs developed a clinical disease with locomotor disorders in an average time of 23 months post inoculation, showing clinical findings in most of them earlier than those described in the BSE in pigs experimental infection. TSE wasn´t confirmed in the preclinical pig. In clinical pigs, the entire cerebral cortex showed severe neuropil vacuolation, extensive and severe vacuolar changes affecting the thalamus, hippocampus and cerebellum. PrPSc was found in CNS of all clinical pigs (6/6). Intracellular (intraneuronal and intraglial) and neuropil-associated PrPSc deposition was consistently observed in the brainstem, thalamus, and deeper layers of the cerebral cortex. Also, PrPSc was observed in PNS, mainly in the myenteric plexus and also in nerves belonging to the skeleton muscle. Moreover, the glycosylation profile showed a 3 band pattern with a predominant monoglycosylated band in positive pig samples.

 

This features concern on the potential risk of utilization of meat and bound meal of small ruminants in feeding pigs.

 

P.177: Elements modulating the prion species barrier and its passage consequences

 

Juan-Carlos Espinosa,1 Patricia Aguilar-Calvo,1 Ana Villa-Diaz,1 Olivier Andréoletti,2 and Juan María Torres1 1Centro de Investigación en Sanidad Animal (CISA-INI A); Valdeolmos, Madrid, Spain; 2UMR INR A-ENVT 1225; Interactions Hôte Agent Pathogène; École Nationale Vétérinaire de Toulouse; Toulouse, France

 

The phenotypic features of Transmissible Spongiform Encephalopathy (TSE) strains may be modified during passage across a species barrier. In this study we investigated the biochemical and biological characteristics of Bovine Spongiform Encephalopathy (BSE) infectious agent after transmission in both natural host species (cattle, sheep, pigs, and mice) and in transgenic mice overexpressing the corresponding cellular prion protein (PrPC) in comparison with other non-BSE related prions from the same species. After these passages, most characteristics of the BSE agent remained unchanged. BSE-derived agents only showed slight modifications in the biochemical properties of the accumulated PrPSc, which were demonstrated to be reversible upon re-inoculation into transgenic mice expressing bovine-PrPC. Transmission experiments in transgenic mice expressing bovine, porcine or human-PrP revealed that all BSE-derived agents were transmitted with no or a weak transmission barrier. In contrast, a high species barrier was observed for the non-BSE related prions that harboured an identical PrP amino acid sequence such as sheep-scrapie, mouse RML or human sCJD isolates, supporting the theory that the prion transmission barrier is modulated by strain properties (presumably conformation-dependent) rather than by PrP amino acid sequence differences between host and donor.

 

As identical results were observed with prions propagated either in natural hosts or in transgenic mouse models, we postulate that the species barrier and its passage consequences are uniquely governed by the host PrPC sequence and not influenced by the PrPC expression level or genetic factors other than the PrPC amino acid sequence. All these findings unequivocally demonstrate that the species barrier and its passage consequences are uniquely driven by the PrPC sequence, and not by other host genetic factors, demonstrating the validity of transgenic PrP animals as models for studies of the species barrier.

 

The results presented herein reinforce the idea that the BSE agent is highly promiscuous, infecting other species, maintaining its properties in the new species, and even increasing its capabilities to jump to other species including humans. These data are essential for the development of an accurate risk assessment for BSE.

 

SNIP...SEE FULL TEXT ;

 

Monday, June 23, 2014

 

*** PRION 2014 TYPICAL AND ATYPICAL BSE AND CJD REPORT UPDATES

 


 

Sunday, June 29, 2014

 

*** Transmissible Spongiform Encephalopathy TSE Prion Disease North America 2014

 


 

The most recent assessments (and reassessments) were published in June 2005 (Table I; 18), and included the categorisation of Canada, the USA, and Mexico as GBR III. Although only Canada and the USA have reported cases, the historically open system of trade in North America suggests that it is likely that BSE is present also in Mexico.

 


 

Wednesday, February 08, 2012

 

Scrapie, Israel via OIE 02/02/2012

 

From: Terry S. Singeltary Sr.

 

Sent: Wednesday, February 08, 2012 10:28 AM

 

To: BSE-L BSE-L

 

Cc: hmb-central@icba.org.il ; delegation-israel@eeas.europa.eu ; Cvo_vsah@moag.gov.il ; galonn@moag.gov.il ; CJDVOICE CJDVOICE ; bloodcjd bloodcjd

 

Subject: Scrapie, Israel via OIE 02/02/2012

 


 

Wednesday, May 25, 2011

 

O.I.E. Terrestrial Animal Health Standards Commission and prion (TSE) disease reporting 2011

 

----- Original Message -----

 

From: Terry S. Singeltary Sr.

 

To: BSE-L@LISTS.AEGEE.ORG

 

Cc: trade@oie.int ; oie@oie.int ; f.diaz@oie.int ; scientific.dept@oie.int ; cjdvoice@yahoogroups.com ; BLOODCJD@YAHOOGROUPS.COM

 

Sent: Tuesday, May 24, 2011 2:24 PM

 

Subject: O.I.E. Terrestrial Animal Health Standards Commission and prion (TSE) disease reporting 2011

 


 

Greetings OIE et al,

 

I think that the OIE et al, should explain to the lay public, as to why the OIE post TSE prion disease reports and incidence there from different species on their disease reporting reports via email and or on their news feed web site, daily and or weekly, for just a chosen few Countries, yet other Countries seem to be exempt from this reporting to the public. WHY is this ?

 

For instance, Japan just reported another incidence of scrapie, this time in goat.

 


 

however, the USA (Michigan), is awash in scrapie in goat cases, to a point of epidemic, however, the OIE does not report this, WHY is this ?

 

the USA and Canada Nor-98 scrapie cases are mounting. NO reports from the OIE. WHY is this ?

 

we the lay public deserve an answer. i have ask this question before. i have ask it about CWD to the OIE a decade ago.

 

WHY do some Countries get their TSE prion reports posted, and the USA does not, the USA is exempt from this Global embarrassment?

 

i am confused.

 

IF the OIE is going to be a reputable global disease control reporting agency, then the OIE needs to be honest and trust worthy and equal reporting for all Countries, not just a chosen few, while others are exempt. This weakens the animal disease reporting system, and really in all reality, seems to enhance fraud, and undermines reporting of actual disease, thus, defeats the very purpose of the O.I.E., thus undermines the very reason the OIE was suppose to be set up for.

 

If countries can choose and pick whether or not their different animal disease are reported, and or NOT reported, then what's the point of the O.I.E. $$$

 

MY personal opinion, if a country is going to belong to the OIE, and or boast about OIE regulations they go by, then they should be made to report animal disease just as any other country does to the OIE, or they should not be a part of this OIE, and should not be allowed to be boasting that they go by OIE guidelines. ...

 

with sincere regards, terry

 

snip...see full text ;

 


 

Saturday, December 18, 2010

 

OIE Global Conference on Wildlife Animal Health and Biodiversity - Preparing for the Future (TSE AND PRIONS) Paris (France), 23-25 February 2011

 


 

I see again that the OIE has done little to help eradicate all animal TSE from the globe, and in fact in my opinion, have help enhance the spread of BSE and other animal TSE globally by their industry friendly regulations. I tried to warn the OIE in 2002 about CWD and the potential, but very real threat of CWD to humans. I was told that they were seriously considering this. what happened ? NOW, the OIE and the USDA collaborate to make legal the trading of all strains of atypical BSE legal, and in fact have done so with the atypical scrapie, when science has made perfectly clear the risk factors to humans and other species. I have said it once (see below), and i will say again ;

 

"THE OIE has now shown they are nothing more than a National Trading Brokerage for all strains of animal TSE. AS i said before, OIE should hang up there jock strap now, since it appears they will buckle every time a country makes some political hay about trade protocol, commodities and futures. IF they are not going to be science based, they should do everyone a favor and dissolve there organization."

 

NOW, some history on the failed OIE BSE/TSE policy, and why the OIE allowed BSE and other TSE to spread around the globe $$$

 

snip...see full text ;

 


 

Docket APHIS-2006-0026 Docket Title Bovine Spongiform Encephalopathy; Animal Identification and Importation of Commodities Docket Type Rulemaking Document APHIS-2006-0026-0001 Document Title Bovine Spongiform Encephalopathy; Minimal-Risk Regions, Identification of Ruminants and Processing and Importation of Commodities Public Submission APHIS-2006-0026-0012 Public Submission Title Comment from Terry S Singletary

 


 

Docket APHIS-2006-0041 Docket Title Bovine Spongiform Encephalopathy; Minimal-Risk Regions; Importation of Live Bovines and Products Derived from Bovines Commodities Docket Type Rulemaking Document APHIS-2006-0041-0001 Document Title Bovine Spongiform Encephalopathy; Minimal-Risk Regions; Importation of Live Bovines and Products Derived From Bovines Public Submission APHIS-2006-0041-0028 Public Submission Title Comment from Terry S Singletary

 

Comment 2006-2007 USA AND OIE POISONING GLOBE WITH BSE MRR POLICY

 

THE USA is in a most unique situation, one of unknown circumstances with human and animal TSE. THE USA has the most documented TSE in different species to date, with substrains growing in those species (BSE/BASE in cattle and CWD in deer and elk, there is evidence here with different strains), and we know that sheep scrapie has over 20 strains of the typical scrapie with atypical scrapie documented and also BSE is very likely to have passed to sheep. all of which have been rendered and fed back to animals for human and animal consumption, a frightening scenario. WE do not know the outcome, and to play with human life around the globe with the very likely TSE tainted products from the USA, in my opinion is like playing Russian roulette, of long duration, with potential long and enduring consequences, of which once done, cannot be undone. These are the facts as I have come to know through daily and extensive research of TSE over 9 years, since 12/14/97. I do not pretend to have all the answers, but i do know to continue to believe in the ukbsenvcjd only theory of transmission to humans of only this one strain from only this one TSE from only this one part of the globe, will only lead to further failures, and needless exposure to humans from all strains of TSE, and possibly many more needless deaths from TSE via a multitude of proven routes and sources via many studies with primates and rodents and other species.

 

MY personal belief, since you ask, is that not only the Canadian border, but the USA border, and the Mexican border should be sealed up tighter than a drum for exporting there TSE tainted products, until a validated, 100% sensitive test is available, and all animals for human and animal consumption are tested. all we are doing is the exact same thing the UK did with there mad cow poisoning when they exported it all over the globe, all the while knowing what they were doing. this BSE MRR policy is nothing more than a legal tool to do just exactly what the UK did...

 


 

Docket APHIS-2006-0041 Docket Title Bovine Spongiform Encephalopathy; Minimal-Risk Regions; Importation of Live Bovines and Products Derived from Bovines Commodities Docket Type Rulemaking Document APHIS-2006-0041-0001 Document Title Bovine Spongiform Encephalopathy; Minimal-Risk Regions; Importation of Live Bovines and Products Derived From Bovines Public Submission APHIS-2006-0041-0028.1 Public Submission Title Attachment to Singletary comment

 

January 28, 2007

 

Greetings APHIS,

 

I would kindly like to submit the following to ;

 

BSE; MRR; IMPORTATION OF LIVE BOVINES AND PRODUCTS DERIVED FROM BOVINES [Docket No. APHIS-2006-0041] RIN 0579-AC01

 


 

*** REPORT OF THE MEETING OF THE OIE TERRESTRIAL ANIMAL HEALTH STANDARDS COMMISSION Paris, 19–28 February 2013

 

In response to a Member Country’s detailed justification for listing of chronic wasting disease of cervids (CWD) against the criteria of Article 1.2.2., the Code Commission recommended this disease be reconsidered for listing.

 


 

SUMMARY REPORT CALIFORNIA ATYPICAL L-TYPE BOVINE SPONGIFORM ENCEPHALOPATHY CASE INVESTIGATION JULY 2012 CALIFORNIA

 

Summary Report BSE 2012

 

Executive Summary

 


 

Saturday, August 4, 2012

 

Final Feed Investigation Summary - California BSE Case - July 2012

 


 

Saturday, August 4, 2012

 

Update from APHIS Regarding Release of the Final Report on the BSE Epidemiological Investigation

 


 

Monday, May 05, 2014

 

*** Member Country details for listing OIE CWD 2013 against the criteria of Article 1.2.2., the Code Commission recommends consideration for listing ***

 


 

IN SHORT, AND IN A NUT SHELL ;

 

(Adopted by the International Committee of the OIE on 23 May 2006)

 

11. Information published by the OIE is derived from appropriate declarations made by the official Veterinary Services of Member Countries. The OIE is not responsible for inaccurate publication of country disease status based on inaccurate information or changes in epidemiological status or other significant events that were not promptly reported to the Central Bureau,

 


 

Wednesday, February 12, 2014

 

USDA/APHIS NOTICE: Final Rule Regarding Imports and BSE Effective March 4, 2014

 


 

Sunday, December 15, 2013

 

FDA PART 589 -- SUBSTANCES PROHIBITED FROM USE IN ANIMAL FOOD OR FEED VIOLATIONS OFFICIAL ACTION INDICATED OAI UPDATE DECEMBER 2013 UPDATE

 


 

TSS