An investigation has been opened into the death of a scientist who was studying a transmissible and deadly disease CJD in Spain DEGENERATIVE DISEASES
An investigation has been opened into the death of a scientist who was studying a transmissible and deadly disease in Spain
Three institutions are trying to ascertain the origin of the infectious Creutzfeldt-Jakob disease samples discovered in the biochemist’s laboratory. The 45-year-old investigator died in 2022
The University of Barcelona’s School of Medicine, in L’Hospitalet de Llobregat, where laboratory 4141 is located.
MASSILIANO MINOCRI
Manuel Ansede
MANUEL ANSEDE
Madrid - OCT 19, 2023 - 16:15 EDT
A prestigious Spanish researcher of Creutzfeldt-Jakob disease died last year after experiencing symptoms consistent with this deadly ailment, as EL PAÍS has learned from multiple sources at the three institutions involved. Three months ago, the University of Barcelona opened an internal investigation to ascertain the origin of thousands of unauthorized samples, some of them infectious, discovered in a freezer in its laboratory 4141, where the deceased biochemist worked. He was a member of the Bellvitge Biomedical Research Institute (IDIBELL) and the CIBER public consortium. These two institutions have joined the internal investigation, after noting concern among colleagues at the facility, who did not know the level of risk to which they were exposed without their knowledge. This neurodegenerative disease incubates silently for years, but when symptoms appear — rapid dementia and muscle stiffness — it is fatal. Life expectancy after diagnosis is barely six months. Its best-known animal equivalent is mad cow disease.
The biochemist joined the 4141 lab at the University of Barcelona in January 2018 as a principal investigator with a group of his own; his wife joined shortly after. Together, they identified characteristic substances in human cerebrospinal fluid, useful for the diagnosis of rapid dementia. In November 2020, the now deceased scientist began to feel unwell and asked to leave. After his colleagues found out that his symptoms were consistent with Creutzfeldt-Jakob disease, he demanded absolute privacy and decided to hide his diagnosis, according to the sources consulted for this article. He died at the age of 45.
On December 18, 2020, the head of the 4141 laboratory, Isidre Ferrer, a professor of Pathology at the University of Barcelona and a member of IDIBELL, informed the directors of both institutions that suspicious samples of cerebrospinal fluid from people with Creutzfeldt-Jakob disease and other neurodegenerative types of dementia had been discovered by chance in a freezer at 80 degrees below zero, according to internal documentation to which EL PAÍS had access. The thousands of unauthorized samples from patients and animals were in a drawer reserved for the sick researcher’s group and lacked records indicating their presence. The University of Barcelona then ordered the immediate closure and decontamination of laboratory 4141, located in the School of Medicine at L’Hospitalet de Llobregat.
Doctor Gabriel Capellá, the director of IDIBELL, explains that they have identified “a maximum of eight people” who worked in the laboratory at that time, in addition to the deceased scientist and Isidre Ferrer. Some of these coworkers have required months of psychological care. The university’s safety office and IDIBELL’s prevention service determined that there was “an unacceptable risk,” although Capellá emphasizes that “there is no record of any occupational accident” in which a researcher could have been infected with contaminated material. Creutzfeldt-Jakob disease and other human transmissible spongiform encephalopathies are caused by abnormal proteins called prions, which accumulate in the brain and cause a microscopic sponge-like appearance. There are only one or two cases per million inhabitants, the vast majority of which are of unknown cause, but cases of the disease have also been reported after contact with surgical instruments contaminated by these prions.
The three institutions involved took more than two years to send the suspect samples for analysis to a specialized center, the CIC bioGUNE, in Derio, Spain. A spokeswoman for the University of Barcelona says that they sent them in December 2022 and the three organizations received the results in March 2023. Four months later, in July, the legal departments at the three institutions finally informed the 4141 laboratory workers that the Creutzfeldt-Jakob disease samples were potentially infectious, as feared. “You can debate whether we have been quick [in our response] or not, but we have been transparent. We are [part of] three institutions that had to agree, and we have acted as guarantors,” says Capellá. A similar situation also occurred in France; following the death of a researcher from Creutzfeldt-Jakob in 2019 and the discovery of another suspected case, all public laboratories investigating prion diseases decided to temporarily close in July 2021 to review their protocols.
Laboratory 4141 was not equipped to handle high biohazard samples. It did not even have a biosafety hood. At the end of 2018, the CIBER public consortium signed an agreement so that the group could work with these dangerous samples at the high-security laboratory of the Animal Health Research Center (CReSA) in Bellaterra, Spain, near Barcelona. According to the sources we consulted, there was no reason to have the contaminated material in laboratory 4141, beyond saving time during experiments, since the CReSA bunker is 30 kilometers (about 19 miles) away and required waiting one’s turn to use. Isidre Ferrer, the head of the facility at the time, who has since retired, prefers not to comment on the case until the internal investigation is completed, but he emphasizes that he was unaware of the existence of these dangerous samples.
The IDIBELL director recalls that the deceased scientist was “a promising and brilliant researcher.” From 2013 to 2017, he worked at the University Medical Center of Göttingen (Germany) under neurologist Inga Zerr, a leading international expert in Creutzfeldt-Jakob disease. Physician Margarita Blázquez, who manages the CIBER public consortium, notes that the disease’s incubation period can last several years, so, if the deceased researcher really had it, he also could have become infected with it in Germany or at another of his previous laboratories. This newspaper has tried to contact the scientist’s widow via email but has not received a response. She asked to be discharged shortly after her husband did. The three institutions are now investigating whether the couple handled the dangerous samples without authorization in lab 4141. A third person affiliated with CIBER, a member of the now-deceased biochemist’s research group, worked with potentially infectious Creutzfeldt-Jakob samples without being informed that they were infectious.
The security office of the University of Barcelona believes that the samples would only have been a problem in the case of accidental inoculation or ingestion while handling them. But internal documents confirm the alarm the situation has caused on campus. “The laboratory technicians and investigators express their enormous concern about the fact that, so far, it has not been possible to determine the origin of the doctor’s illness. They are left to worry about whether they may suffer the same fate in a few years’ time as a result of uncontrolled contamination that may have been created in the laboratory,” according to the minutes of a December 22, 2020, meeting between workers and Carles Solsona, the director of the Department of Pathology at the University of Barcelona. “This fear causes them to suffer a state of permanent anguish, causing insomnia and irritability.”
The IDIBELL director sent a message to the center’s entire staff on the 11th, five days after EL PAÍS informed him that it was investigating the case. Gabriel Capellá then told his workers of “a very serious incident that became known on campus for the first time at the end of 2020.″ With “deep dismay,” Capellá announced the researcher’s death “due to a possible prion condition,” with “a possible iatrogenic [a disease acquired by contact with contaminated materials during a medical procedure].” The director also reported finding “potentially dangerous samples” in a freezer. “Our priority is to ensure that this situation is handled rigorously and transparently to limit the damage to the reputation of our institutions,” he said.
Do you have more information about this case or other similar ones? You can write to us at mansede@elpais.es.
Sign up for our weekly newsletter to get more English-language news coverage from EL PAÍS USA Edition
Friendly fire, pass it forward, they call it iatrogenic cjd, or what i call 'tse prion poker', are you all in $$$
all iatrogenic cjd is, is sporadic cjd, before the iatrogenic event is discovered, traced back, proven, documented, put into the academic domain, and then finally the public domain, this very seldom happens, thus problem solved, it's all sporadic cjd...
Direct neural transmission of vCJD/BSE in macaque after finger incision CORRESPONDENCE
Direct neural transmission of vCJD/BSE in macaque after finger incision
Jacqueline Mikol1 · Jérôme Delmotte1 · Dolorès Jouy1 · Elodie Vaysset1 · Charmaine Bastian1 · Jean‑Philippe Deslys1 ·
Emmanuel Comoy1 Received: 10 July 2020 / Revised: 8 September 2020 / Accepted: 25 September 2020 / Published online: 6 October 2020 © The Author(s) 2020
Non-human primates appeared as the closest model to study human iatrogenic prion diseases [14]: we report here the consequences of variant Creutzfeldt–Jakob disease/bovine spongiform encephalopathy (vCJD/BSE) inoculation in a cynomolgus macaque finger, with the demonstration of an original mode of propagation and the practical risk for professional exposure.
The distal right middle finger handpad of a 4-year-old macaque was incised on both lateral sides to induce local inflammation, and then injected with the equivalent of 10 mg of a BSE, orally challenged macaque brain [18]. After an 18 months period of finger clumsiness, the clinical disease (behaviour abnormalities, fear, hyperesthesia, gait disturbances, shaking) began 7.5 years after inoculation and euthanasia took place 2 months later for welfare reasons. Motor conduction velocity of the right median nerve was reduced to one-third of the left counterpart and sensory potential was not detected.
Histological and biochemical studies were performed as previously described. All the elements of the triad were present [7–9]: spongiform change was moderate in neocortex, striatum, brain stem, mild in spinal cord but severe in thalamus and cerebellum; neuronal loss was globally moderate, but severe in cerebellum and sacral spinal cord (vacuolated neurons); gliosis was severe in thalamus, cerebellum and brain stem and moderate elsewhere (Supplementary Fig. 1). ELISA and western blot (WB) showed the expected accumulation of PrPres with BSE glycophoretic pattern at all levels of brain and spinal cord (Supplementary Fig. 2).
In the brain, PrPd deposits were laminar into the cortical deep layers, massive into thalamus, basal ganglia, cerebellum, and brain stem. In spinal cord, PrPd was symmetrically distributed, intense in the Substantia gelatinosa and nucleus dorsal of Clarke while decreased at sacral level. Deposits were diverse into the whole CNS: synaptic, perineuronal, reticular aggregates, mini-plaques, plaques, and incomplete florid plaques. The retinal plexiform layers were labelled (Supplementary Fig. 1i). There were no amyloid or tau deposits.
Unusual PrPd deposits were observed along dendrites, short and long axons, neuritic threads tracing fne networks of straight lines or like strings of pearls (Supplementary Fig. 3). They were present into deep neocortex, basal ganglia, and motoneurons. Such long processes are not frequent but have been reported in human [13] and experimental studies [10, 22]. PrPd deposits were also noted as very mild into striato-pallidal projections, both limbs of internal capsule and fornix (Supplementary Fig. 3). The presence of PrPd in white matter has been reported (Supplementary text 4).
Peripherally, the expected PrPd was undetectable in lymphoid organs, including spleen, through biochemical or immunohistochemical analyses, while prion replication was detected in the peripheral nervous system (PNS): PrPd staining was visualized in many dorsal root ganglia (DRG) but only in nerves innervating the forelimb site of injection (median and ulnar nerves). At the cellular level, PrPd was limited to ganglia and satellite cells in DRG and Schwann cells (Scs) all along nerves whereas axons were never labelled (Fig. 1). Previously, using postmortem immunohistochemical studies (listed in Supplementary text 5), PrPd has been shown in peripheral nervous system in all forms of human neuropathies, albeit more frequently in vCJD, mostly in posterior root nerve fbres at adaxonal location and/or in ganglion and satellite cells. The restricted amount of PrPd was repeatedly underlined but, recently, prion RTQuiC was positive in all nerves examined [2]. PrPd has also been described, frst in scrapie [17] then in BSE, as limited “adaxonal deposits” or/and Sc deposits, with or without DRG cell involvement (review in [4] and Supplementary text 6). Previous studies of the mode of propagation of PrPd have reported variable observations and analyses depending on strains, host species and genotype (Supplementary text 6); the authors discussed the role of the sensory route of trafficking of prions, the modifications of axonal transport, the centrifugal versus centripetal spread of PrPd .
After peripheral infection, accumulation of infectious agent is reputed to occur in lymphoid tissues before direct neuroinvasion [18, 19], even with very little apparent peripheral lymphoreticular deposition [6, 20]. Here, there is no apparent replication/amplification of vCJD/BSE agent in the lymphoid tissues of the exposed macaque. In this model, the neural contamination occurred directly in the highly innervated finger while neuroinvasion appears to occur in Scs along the median nerve to the DRG, with the appearance of the classical labelling of ganglion cells which indicates the onset of the first level of neuronal infection. This model provides direct evidence of the hypothesis of a sequential infection of Scs from the periphery to the CNS, followed by a secondary diffusion into the spinal cord, as already considered by our group [15] and others [1, 3, 11, 12, 21]. It is to note that studies based on intra-sciatic nerve injections in hamsters [16] and transgenic mice [12] had established a rate of transport of infectivity of, respectively, 0.5–2 mm and 0.7 mm per day. This key role of Scs could explain both the low speed of propagation and the discrepancy between the paucity of PrPd into the distal part of the sensory nerves followed by the positivity of DRG, satellite cells and proximal roots.
In conclusion, we have observed that the exposure of a primate to vCJD/BSE through a distal finger lesion induces, after more than 7.5 years of silent incubation, a massive deposit of PrPd , strictly restricted to the nervous system and the eye.
Our data suggest a new type of pure unique peripheral nervous contamination in which the Scs would have a major role in the mode of centripetal progression of PrPd in the peripheral nervous system. Moreover, considering the fact that, recently, “a variant CJD diagnosed 7.5 years after occupational exposure” (cryomicrotomy) in a technician was observed [5], this experimental case report supports the risk linked to professional exposure and reinforces the necessity of adequate measures of prevention.
Second death in France in a laboratory working on prions
Creutzfeldt-Jakob disease has killed a person who handled this infectious agent at Inrae in Toulouse. After a first death in 2019, a moratorium on work on this pathogen has been extended.
By Hervé Morin
Creutzfeldt-Jakob disease killed a few days ago a retired research technician from the National Research Institute for Agriculture, Food and the Environment (Inrae), who had worked in Toulouse in contact of biological tissue infected with prions. This death sows consternation and concern in the scientific community working with these infectious agents. It follows the death, on June 17, 2019, of Emilie Jaumain, a 33-year-old laboratory technician, suffering from the same incurable neurodegenerative disease. The young woman is said to have contracted it in 2010, cutting herself while handling fragments of the brains of mice infected with prions, in another unit of INRAE, in Jouy-en-Josas.
Computer representation of part of a prion protein on a light micrograph of pyramidal nerve cells (neurons, in black) in the cerebellum of the brain. ALFRED PASIEKA / SCIENCE PHOTO LIBRARY
Regarding the retiree from Toulouse, it will be necessary to determine whether she was the victim of a genetic or sporadic form of Creutzfeldt-Jakob disease, if the disease may have been caused by the ingestion of meat contaminated by the agent of encephalopathy. bovine spongiform (BSE, also called mad cow disease) or, as in the case of Emilie Jaumain, if accidental occupational exposure can be claimed. Prion diseases are caused by proteins taking an aberrant conformation, which gives them the property of replicating to form aggregates that are deleterious for neurons. There are around 150 cases per year in France, resulting in fatal degeneration of the central nervous system.
Temporary suspension of work on prions in French public research laboratories
PRESS RELEASE - The general directorates of ANSES, CEA, CNRS, INRAE and Inserm, have decided jointly and in agreement with the Ministry of Higher Education, Research and Innovation to suspend as a precaution all their research and experimentation work relating to prion diseases, for a period of three months.
This precautionary measure is motivated by the knowledge of a possible new case of a person suffering from Creutzfeldt-Jakob disease and who worked in a laboratory for research on prions.
Posted on July 27, 2021
The suspension period put in place as of this day will make it possible to study the possibility of a link between the observed case and the person's former professional activity and to adapt, if necessary, the preventive measures in force in the research laboratories.
The person with Creutzfeldt-Jakob disease (CJD)1, whose form is not yet known, is a retired INRAE agent. This could be the second case of infectious CJD affecting a scientist who worked on prions, after that of an assistant engineer who died of the disease in 2019, and who was injured in 2010 during of an experiment.
Following this death, a general inspection mission was launched in July 2019 by the ministries of research and agriculture with French laboratories handling prions. Submitted in October 2020, the report concluded on the regulatory compliance of the laboratories visited as well as the presence of a risk control culture within the research teams.
Research around prion proteins, with high public health issues, allows major advances in the understanding of the functioning of these infectious pathogens, and contributes to results that are transferable to other related degenerative diseases such as Alzheimer's and Alzheimer's diseases. Parkinson's.
At the level of each establishment, regular and transparent information will be provided to all the working communities concerned by this measure.
1 The disease Creutzfeldt-Jakob disease (CJD) is one of prion diseases - still called encephalopathies subacute spongiform transmitted(TSE) - of diseases rare, characterized by a degeneration rapid and fatal the system nervous central. They are caused by the accumulation in the brain of a normally expressed protein but poorly conformed - the prion protein - which leads to the formation of deleterious aggregates for neurons. For now , no treatment will allow to change the course of these diseases. It can be of origin sporadic , form the most frequent , original genetic or finally to form infectious following a contamination.
France issues moratorium on prion research after fatal brain disease strikes two lab workers
By Barbara CasassusJul. 28, 2021 , 4:35 AM
PARIS—Five public research institutions in France have imposed a 3-month moratorium on the study of prions—a class of misfolding, infectious proteins that cause fatal brain diseases—after a retired lab worker who handled prions in the past was diagnosed with Creutzfeldt-Jakob disease (CJD), the most common prion disease in humans. An investigation is underway to find out whether the patient, who worked at a lab run by the National Research Institute for Agriculture, Food and Environment (INRAE), contracted the disease on the job.
If so, it would be the second such case in France in the past few years. In June 2019, an INRAE lab worker named Émilie Jaumain died at age 33, 10 years after pricking her thumb during an experiment with prion-infected mice. Her family is now suing INRAE for manslaughter and endangering life; her illness had already led to tightened safety measures at French prion labs.
The aim of the moratorium, which affects nine labs, is to “study the possibility of a link with the [new patient’s] former professional activity and if necessary to adapt the preventative measures in force in research laboratories,” according to a joint press release issued by the five institutions yesterday.
“This is the right way to go in the circumstances,” says Ronald Melki, a structural biologist at a prion lab jointly operated by the French national research agency CNRS and the French Alternative Energies and Atomic Energy Commission (CEA). “It is always wise to ask questions about the whole working process when something goes wrong.” "The occurrence of these harsh diseases in two of our scientific colleagues clearly affects the whole prion community, which is a small 'familial' community of less than 1000 people worldwide," Emmanuel Comoy, deputy director of CEA's Unit of Prion Disorders and Related Infectious Agents, writes in an email to Science. Although prion research already has strict safety protocols, "it necessarily reinforces the awareness of the risk linked to these infectious agents," he says.
In Jaumain’s case, there is little doubt she was infected on the job, according to a paper published in The New England Journal of Medicine (NEJM) in 2020. She had variant CJD (vCJD), a form typically caused by eating beef contaminated with bovine spongiform encephalopathy (BSE), or mad cow disease. But Europe’s BSE outbreak ended after 2000 and vCJD virtually disappeared; the chance that someone of Jaumain’s age in France would contract food-borne vCJD is “negligible or non-existent,” according to the paper.
A scientist with inside knowledge says the new patient, a woman who worked at INRAE’s Host-Pathogen Interactions and Immunity group in Toulouse, is still alive. French authorities were apparently alerted to her diagnosis late last week. The press release suggests it’s not yet clear whether the new case is vCJD or “classic” CJD, which is not known to be caused by prions from animals. Classic CJD strikes an estimated one person per million. Some 80% of cases are sporadic, meaning they have no known cause, but others are genetic or contracted from infected human tissues during transplantations. The two types of CJD can only be distinguished through a postmortem examination of brain tissue.
Lab infections are known to occur with many pathogens, but exposure to CJD-causing prions is unusually risky because there are no vaccines or treatments and the condition is universally fatal. And whereas most infections reveal themselves within days or weeks, CJD’s average incubation period is about 10 years.
For Jaumain, who worked at INRAE’s Molecular Virology and Immunology Unit in Jouy-en-Josas, outside Paris, that long period of uncertainty began on 31 May 2010, when she stabbed her left thumb with a curved forceps while cleaning a cryostat—a machine that can cut tissues at very low temperatures—that she used to slice brain sections from transgenic mice infected with a sheep-adapted form of BSE. She pierced two layers of latex gloves and drew blood. “Émilie started worrying about the accident as soon as it had happened, and mentioned it to every doctor she saw,” says her widower, Armel Houel.
In November 2017, Jaumain developed a burning pain in her right shoulder and neck that worsened and spread to the right half of her body over the following 6 months, according to the NEJM paper. In January 2019, she became depressed and anxious, suffering memory impairment and hallucinations. “It was a descent into hell,” Houel says. She was diagnosed with “probable vCJD” in mid-March of that year and died 3 months later. A postmortem confirmed the diagnosis.
“The occurrence of these harsh diseases in two of our scientific colleagues clearly affects the whole prion community.” Emmanuel Comoy, French Alternative Energies and Atomic Energy Commission
INRAE only recently admitted the likely link between Jaumain’s illness and the accident. “We recognize, without ambiguity, the hypothesis of a correlation between Emilie Jaumain-Houel’s accident … and her infection with vCJD,” INRAE chair and CEO Philippe Mauguin wrote in a 24 June letter to an association created by friends and colleagues to publicize Jaumain’s case and lobby for improvements in lab safety. (Science has obtained a copy of the letter, which has not been made public.)
Jaumain’s family has filed both criminal charges and an administrative suit against INRAE, alleging a range of problems at Jaumain’s lab. She had not been trained in handling dangerous prions or responding to accidents and did not wear both metal mesh and surgical gloves, as she was supposed to, says Julien Bensimhon, the family’s lawyer. The thumb should have been soaked in a bleach solution immediately, which did not happen, Bensimhon adds.
Independent reports by a company specializing in occupational safety and by government inspectors have found no safety violations at the lab; one of them said there was a “strong culture” of risk management. (Bensimhon calls the reports “biased.”)
The government inspectors’ report concluded that Jaumain’s accident was not unique, however. There had been at least 17 accidents among the 100 or so scientists and technicians in France working with prions in the previous decade, five of whom stabbed or cut themselves with contaminated syringes or blades. Another technician at the same lab had a fingerprick accident with prions in 2005, but has not developed vCJD symptoms so far, Bensimhon says. “It is shocking that no precautionary measures were taken then to ensure such an accident never happened again,” he says.
In Italy, too, the last person to die of vCJD, in 2016, was a lab worker with exposure to prion-infected brain tissue, according to last year’s NEJM paper, although an investigation did not find evidence of a lab accident. That patient and the lab they worked at have not been identified.
After Jaumain’s diagnosis, “We contacted all the research prion labs in France to suggest they check their safety procedures and remind staff about the importance of respecting them,” says Stéphane Haïk, a neuroscientist at the Paris Brain Institute at Pitié-Salpêtrière Hospital who helped diagnose Jaumain and is the corresponding author on the paper. Many labs tightened procedures, according to the government inspectors' report, for instance by introducing plastic scissors and scalpels, which are disposable and less sharp, and bite and cut-resistant gloves. A team of experts from the five research agencies is due to submit proposals for a guide to good practice in prion research to the French government at the end of this year.
The scientific community has long recognized that handling prions is dangerous and an occupational risk for neuropathologists, says neuropathologist Adriano Aguzzi of the University of Zurich. Aguzzi declined to comment on the French CJD cases, but told Science his lab never handles human or bovine prions for research purposes, only for diagnostics. “We conduct research only on mouse-adapted sheep prions, which have never been shown to be infectious to humans,” Aguzzi says. In a 2011 paper, his team reported that prions can spread through aerosols, at least in mice, which “may warrant re-thinking on prion biosafety guidelines in research and diagnostic laboratories,” they wrote. Aguzzi says he was “totally shocked” by the finding and introduced safety measures to prevent aerosol spread at his own lab, but the paper drew little attention elsewhere.
The moratorium will "obviously" cause delays in research, but given the very long incubation periods in prion diseases, the impact of a 3-month hiatus will be limited, Comoy says. His research team at CEA also works on other neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease, and will shift some of its efforts to those.
Although Jaumain’s diagnosis upset many in the field, it hasn't led to an exodus among researchers in France, Haïk says: “I know of only one person who resigned because they were so worried.”
With reporting by Martin Enserink.
Posted in: EuropeHealthScientific Community
doi:10.1126/science.abl6587
Variant Creutzfeldt–Jakob Disease Diagnosed 7.5 Years after Occupational Exposure
Variant Creutzfeldt–Jakob disease was identified in a technician who had cut her thumb while handling brain sections of mice infected with adapted BSE 7.5 years earlier. The long incubation period was similar to that of the transfusion-transmitted form of the disease.
Variant Creutzfeldt–Jakob Disease Diagnosed 7.5 Years after Occupational Exposure
TO THE EDITOR:
We report a case of variant Creutzfeldt–Jakob disease (CJD) that was plausibly related to accidental occupational exposure in a technician who had handled murine samples contaminated with the agent that causes bovine spongiform encephalopathy (BSE) 7.5 years earlier.
In May 2010, when the patient was 24 years of age, she worked in a prion research laboratory, where she handled frozen sections of brain of transgenic mice that overexpressed the human prion protein with methionine at codon 129. The mice had been infected with a sheep-adapted form of BSE. During this process, she stabbed her thumb through a double pair of latex gloves with the sharp ends of a curved forceps used to handle the samples. Bleeding was noted at the puncture site.
In November 2017, she began having burning pain in the right shoulder and neck. The pain worsened and spread to the right half of her body during the following 6 months. In November 2018, an examination of a sample of cerebrospinal fluid (CSF) obtained from the patient was normal. Magnetic resonance imaging (MRI) of the brain showed a slight increase in the fluid-attenuated inversion recovery (FLAIR) signal in the caudates and thalami (Fig. S1A and S1B in the Supplementary Appendix, available with the full text of this letter at NEJM.org). In January 2019, she became depressed and anxious and had memory impairment and visual hallucinations. There was hypertonia on the right side of her body. At that time, an analysis of CSF for 14-3-3 protein was negative. In March 2019, MRI showed an increased FLAIR signal in pulvinar and dorsomedial nuclei of thalami (Fig. S1C through S1E).
Figure 1.
Detection of Abnormal Prion Protein in Biologic Fluid Samples and Postmortem Findings.
The patient was found to be homozygous for methionine at codon 129 of the prion protein gene without mutation. An analysis of a sample of CSF on real-time quaking-induced conversion analysis was negative for a diagnosis of sporadic CJD. However, an analysis of plasma and CSF by means of protein misfolding cyclic amplification was positive for the diagnosis of variant CJD (Figure 1A and 1B). The patient died 19 months after the onset of symptoms. Neuropathological examination confirmed the diagnosis of variant CJD (Figure 1C and 1D). Western blot analysis showed the presence of type 2B protease-resistant prion protein in all sampled brain areas. The clinical characteristics of the patient and the postmortem neuropathological features were similar to those observed in 27 patients with variant CJD who had previously been reported in France.1 (Additional details are provided in the Supplementary Appendix.)
There are two potential explanations for this patient’s condition. Oral transmission from contaminated cattle products cannot be ruled out because the patient was born at the beginning of the French BSE outbreak in cattle. However, the last two patients who had confirmed variant CJD with methionine homozygosity at codon 129 in France and the United Kingdom died in 2014 and 2013, respectively, which makes oral transmission unlikely. In France, the risk of variant CJD in 2019 was negligible or nonexistent in the post-1969 birth cohort.2
Percutaneous exposure to prion-contaminated material is plausible in this patient, since the prion strain that she had handled was consistent with the development of variant CJD.3 The 7.5-year delay between the laboratory accident and her clinical symptoms is congruent with the incubation period in the transfusion-transmitted form of the disease. The ability of this strain to propagate through the peripheral route has been documented, and experimental studies with scrapie strains have shown that scarification and subcutaneous inoculation are effective routes.4,5 The last known Italian patient with variant CJD, who died in 2016, had had occupational contact with BSE-infected brain tissues, although subsequent investigation did not disclose a laboratory accident (Pocchiari M, Italian Registry of CJD: personal communication). Thus, the last two cases of variant CJD outside the United Kingdom have been associated with potential occupational exposure. Such cases highlight the need for improvements in the prevention of transmission of variant CJD and other prions that can affect humans in the laboratory and neurosurgery settings, as outlined in the Supplementary Appendix.
Jean-Philippe Brandel, M.D. Assistance Publique–Hôpitaux de Paris, Paris, France
M. Bustuchina Vlaicu, M.D. Groupe Hospitalier Nord-Essonne, Orsay, France
Audrey Culeux, B.Sc. INSERM Unité 1127, Paris, France
Maxime Belondrade, M.Sc. Daisy Bougard, Ph.D. Etablissement Français du Sang, Montpellier, France
Katarina Grznarova, Ph.D. Angeline Denouel, M.Sc. INSERM Unité 1127, Paris, France
Isabelle Plu, M.D. Elodie Bouaziz-Amar, Pharm.D., Ph.D. Danielle Seilhean, M.D., Ph.D. Assistance Publique–Hôpitaux de Paris, Paris, France
Michèle Levasseur, M.D. Groupe Hospitalier Nord-Essonne, Orsay, France
Stéphane Haïk, M.D., Ph.D. INSERM Unité 1127, Paris, France stephane.haik@upmc.fr
Supported by a grant (ANR-10-IAIHU-06) from Programme d’Investissements d’Avenir and Santé Publique France.
Disclosure forms provided by the authors are available with the full text of this letter at NEJM.org.
5 References
July 2, 2020
N Engl J Med 2020; 383:83-85
DOI: 10.1056/NEJMc2000687
Metrics
Friday, October 20, 2023
An investigation has been opened into the death of a scientist who was studying a transmissible and deadly disease CJD in Spain
0 Comments:
Post a Comment
Subscribe to Post Comments [Atom]
<< Home