Saturday, September 04, 2010

ARS atypical BSE g-h-BSEalabama genetic susceptibility argues against a spontaneous origin for many atypical BSE cases July 2010

ARS atypical BSE g-h-BSEalabama genetic susceptibility argues against a spontaneous origin for many atypical BSE cases July 2010

Prion Gene PRNP ARS researchers at the Midwest Area’s Virus and Prion Research Unit in Ames, IA, identified a prion gene PRNP haplotype that associates with atypical bovine spongiform encephalopathy (BSE). Atypical BSEs are rare prion diseases that have been identified in Asian, European and North American cattle. Two cases have been confirmed within the United States. In 2007, ARS established collaboration with investigators in France, Canada and fellow ARS scientists at the National Animal Disease Center to elucidate the genetics of atypical BSE susceptibility. AHRU characterized PRNP variation in atypical BSE cases from Canada, France, and the United States and identified the haplotype association with atypical BSE. The significance of this finding isn’t the haplotype itself, but evidence that a majority of atypical BSE cases are attributable to underlying genetic susceptibility. This argues against a spontaneous origin for many atypical BSE cases. This research is part of Animal Health, an ARS national program (#103).

22 FY 2009 Annual Report

Action Plan National Program 103 Animal Health 2012-2017

Component 7: Transmissible Spongiform Encephalopathies Problem Statement 7A: Nature and Origin of Prion Agents Problem Statement 7B: Pathobiology of Prion Strains Problem Statement 7C: Determinants of Transmissibility and Epidemiology Problem Statement 7D: Diagnostics, Detection, and Surveillance


Problem Statement 2E: Genetics of Prion Disease Susceptibility Prion diseases have stimulated intense scientific scrutiny since it was first proposed that the infectious agent was devoid of nucleic acid. Despite this finding, host genetics has played a key role in understanding the pathobiology and clinical aspects of prion diseases through the effects of a series of polymorphisms and mutations in the prion protein gene. The advent of vCJD confirmed a powerful human genetic susceptibility factor, as all patients with clinical disease have an identical genotype at the polymorphic codon 129 of the prion gene. The alternative variant at codon 129 is not protective, however, and abnormal prions have been found in lymphoid tissues of individuals of other prion genotypes after exposure to transfused blood products from patients who later succumbed to the disease. Familial forms of prion diseases are also known to be inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder. In most cases, an affected person inherits the altered gene from one affected parent. In some people, familial forms of prion disease are caused by a new mutation in the prion gene. Although such people most likely do not have an affected parent, they can pass the genetic change to their children. Familial Creutzfeldt-Jakob disease (fCJD), Gerstmann-Sträussler-Scheinker (GSS) syndrome, and fatal familial insomnia (FFI) represent the core phenotypes of genetic prion disease. Genetic studies in animals have uncovered similar polymorphisms and mutations in the prion protein gene. Genetic information has led to the discovery of genotypes with relative susceptibility and resistance to Scrapie in sheep. Current Scrapie control programs in the United States and Europe are based on the elimination of susceptible genotypes from the breeding pool. The 2006 U.S. H.-type atypical BSE cow had a polymorphism at codon 211 of the bovine prion gene, resulting in a glutamic acid to lysine substitution (E211K). This substitution is analogous to a human polymorphism associated with the most prevalent form of heritable TSE in humans, and it is considered to have caused BSE in the 2006 U.S. atypical BSE animal.

Research Needs:

The functional genomics of disease resistance are not completely understood, and recent research suggests genetic variations may lead to different clinical outcomes (e.g., vCJD, atypical BSE, atypical Scrapie). This research area is aimed at utilizing powerful computational biology and bioinformatic approaches, along with traditional animal breeding experiments, to steadily improve our understanding of mechanisms of genetic disease resistance.


Anticipated Products:

Genetic variations associated with disease susceptibility.

Scientific information on the correlation between host genotypes and the phenotypes of prion agents.

Genetic factors controlling susceptibility of goats to sheep Scrapie.

Scientific information to evaluate the effectiveness of disease resistance breeding programs in sheep.

Scientific information to evaluate sheep ARR/ARR genotype for resistance to different TSE strains.

Scientific information on the influence of genetics on BSE incubation time and the frequency of animals carrying the E211K allele. Potential Benefits:

These studies will yield critical genetic information that influences disease susceptibility, clinical outcomes, surveillance programs, and the discovery of diagnostic techniques as well as preventative and treatment programs.

Component 2 Resources:

The following ARS locations have research projects addressing the problem statements identified under Component 2:

Ames, IA

Clay Center, NE

Pullman, WA

East Lansing, MI

Beltsville, MD

Athens, GA

Component 3: Zoonotic Diseases

Zoonotic diseases, by definition encompassing all infectious diseases transmitted from animals to man, represent one of the leading causes of illness and death in people. In developing countries, zoonotic diseases stand out as the most prevalent and important threat to public health. Zoonoses also have a negative impact on commerce, travel, and economies worldwide. In industrialized nations, zoonotic diseases are of particular concern to the agricultural sector. Priority diseases include those that are especially difficult to diagnose and cause substantial morbidity and mortality, resulting in significant economic costs to producers when they persist or reemerge. Because many determinants of zoonotic diseases lie outside the purview of the health sector, agriculture and the animal health community must play an important role in preventing these diseases from propagating in domestic animals, starting with proper surveillance systems. Over the years, USDA has invested significant resources in attempts to eradicate endemic zoonoses from livestock populations in the United States (e.g., brucellosis and tuberculosis). However, their persistence in wildlife reservoirs continues to pose challenges. Moreover, some zoonotic agents have been identified as having the potential to be used for bioterrorism. Effective countermeasures are needed to eliminate zoonotic


agents at their animal source and protect our Nation from these important public health threats.

The ARS zoonotic bacterial diseases research program focuses on brucellosis, leptospirosis, and tuberculosis with the strategic goal of developing countermeasures to prevent disease transmission in domestic livestock and wildlife reservoir hosts. Zoonotic viral diseases that pose a significant threat to the Nation (e.g., avian influenza, Rift Valley fever) and are exotic to the United States are addressed under Component 1: Biodefense Research. Additional zoonotic diseases are addressed under Component 6B (Hemoparasitic Diseases) and Component 7 (BSE).

According to rankings at the March 2010 Animal Health Program Planning Workshop, zoonoses are the 2nd priority of the swine industry, 1st of the wildlife industries, 3rd of the dairy industry, and 2nd of the beef industry.


and animals involving degeneration of the nervous system and brain function. TSEs are caused by agents known as prions, or what appear to be primarily infectious proteins that cause normal protein (cellular-prion protein PrPc) molecules to convert into an abnormally structured form (disease-prion protein PrPsc) that can include inducement of the formation of proteinaceous deposits and plaques in the brain. TSEs include Creutzfeldt-Jakob disease (CJD), the primary human prion disease; Scrapie of sheep and goats; Chronic Wasting Disease (CWD) of deer, elk, and moose; and Bovine Spongiform Encephalopathy (BSE), also called ?mad cow,? which is the cause of variant CJD (vCJD) in people and the only TSE known to have crossed the species barrier from animals to people.

Our understanding of TSEs continues to evolve with ongoing research efforts. TSEs are progressive but long developing diseases. In humans, for example, incubation periods from the time of contact with an infectious prion may be decades long. Consequently, completion of research plans in natural hosts may require several years. Improvements have been made with the development of experimental rodent models to shorten the time required to obtain experimental results, but the relevance of any findings in mouse models remains uncertain unless confirmed and validated in natural hosts. In 2004, the Institute of Medicine of the National Academies published a report entitled: Advancing Prion Science, Guidance for the National Prion Research Program. Several federal agencies have directed resources to implement recommendations in the report, including HHS-NIH-, USDA-REE-ARS, HHS-FDA, HHS-CDC, DoD, and EPA. Although significant scientific advances have been made, the research conducted to date has yet to deliver many of the concrete solutions needed to safeguard people and animals from these devastating diseases. A critical concern is the potential for environmental, genetic, or iatrogenic events to lead to new variant TSEs that are infectious and zoonotic.

The White House Office of Science and Technology Policy (OSTP) Interagency Working Group (IWG) on Prion Science identified the following research priorities to maximize the impact of the National Prion Research Program:

Identification of the nature and origin of prion agents

Studies on the pathobiology of prion strains

Research on the determinants of transmissibility and epidemiology

Development of diagnostics, detection, and surveillance


These interrelated priorities represent areas with critical gaps in our knowledge base. They were selected with the aim of establishing strategic collaborations that will produce benefits by aligning core competencies across Federal agencies. Especially notable are the potential benefits to be derived from collaboration between animal health and human -biomedical research.

Stakeholders representing the sheep industries at our March 2010 Animal Health Workshop ranked research to eradicate Scrapie as their 2nd priority, and the goat industry listed it as their 6th priority.

Problem Statement 7A: Nature and Origin of Prion Agents

Significant gaps remain in our understanding of the nature and origin of disease-causing prions. Proving especially problematic is that the normal prion protein is widely expressed, particularly on neurons in the brain, and is found on cell surfaces but its function is unclear. Moreover, the origin of BSE remains a mystery, although spontaneous conversion of bovine prion to the diseased form as occurs in human Creutzfeldt-Jakob disease is one researchable hypothesis. In addition, recent evidence indicates that some forms of BSE may be genetic in nature. Another enigma of TSEs in general is that different strains are found within the same animal species. Research Needs:

The newly discovered strains of BSE and Scrapie, so-called ?atypical? strains, have yet to be fully characterized. There are also fundamental differences between TSEs in different animal species. The factors responsible for host restrictions (species-barrier) are also not fully understood. An investment in this area of research is of paramount importance and will inform all other areas of prion research.

Anticipated Products:

Scientific information on:

The physiological functions of normal prion proteins.

The biophysical and biochemical properties of abnormal prion agents.

Mechanisms of prion protein misfolding.

The origin and prevalence of scrapie in goats.

The origin and prevalence of atypical scrapie in sheep.

The origin of atypical BSE and relationship to classical disease form.

The basis for multiple TSE strains within a host species.

Potential Benefits:

This research will inform the field of prion science and is critical for advancing research programs in countermeasure discovery (see Problem Statement 7D below). Additional benefits will be derived from collaborations between animal health and biomedical research scientists resulting in animal disease models that will enhance our understanding of protein misfolding diseases, molecular neurology and genetics.


Problem Statement 7B: Pathobiology of Prion Strains

Important gaps remain in our basic understanding of the pathobiology of animal prion diseases. One critical need is that of understanding the invasion routes of prions and resolving the variations seen in different animal species.

Research Needs:

It is widely assumed that the oral route of infection is important in the pathogenesis of naturally occurring TSEs of livestock and cervids; however, the mechanism of transmission of TSE agents from the initial site of entry to the central nervous system is not known. A notable feature of prion diseases is a lack of detectable immune responses and inflammation during the course of a prion infection, even though immune system cells may carry prions to target tissues. To date, research in animals suggests that prion accumulation may be largely influenced by the host species affected rather than the TSE involved. An investment in comparative pathology, which has not received much experimental attention, is needed to advance research programs in epidemiology and diagnostic discovery.

Anticipated Products:

Scientific information on:

The manner in which prions enter the nervous system from peripheral sites of exposure such as a host’s gastrointestinal tract, nasal mucosa, skin, and eyes.

Mechanisms of prion spread within the nervous system.

Mechanisms controlling disease incubation time.

Mechanisms of neuropathogenesis.

The molecular underpinnings of prion strains and species barriers.

Prion distribution in goats with scrapie.

Prion distribution in cattle with atypical BSE.

Prion distribution in sheep with atypical scrapie and BSE.

Potential Benefits:

This research will inform the field of prion science of potential risks to human health associated with the newly emerging strains of TSE in various animal hosts and is critical for advancing research programs in epidemiology and diagnostic discovery (see Problem Statements 7C and 7D below).

Problem Statement 7C: Determinants of Transmissibility and Epidemiology

In interspecies transmission studies of TSEs (e.g., Scrapie, CWD) into new hosts (e.g., cattle and rodent models that have proved useful in experimental protocols), scientists have demonstrated the extent of prion accumulation in tissues. There appears to be fundamental differences between hosts but also similarities within animal species, regardless of which TSE is affecting them.

Research Needs:


An essential research need is the development of infection models that represent real TSEs in real target hosts. The results of this research would add insight into human transmissibility and epidemiology.

Anticipated Products:

Scientific information on:

Mechanisms by which abnormal prions are present in biological fluids.

The infectious potential of prions from biological fluids.

Infectivity time course and transmission.

The potential for transmitting scrapie prions to cervids naturally (orally).

The transmission routes of goat scrapie.

The transmission routes of CWD.

The transmission route of atypical scrapie and atypical BSE.

The transmissibility of sheep scrapie to goats and vice versa, including the effects of age and genetic factors on transmissibility.

The transmissibility of atypical BSE isolates to cattle.

Potential Benefits:

This research will directly impact the development of improved diagnostic tests (see Problem Statement 7D below), as well as surveillance programs and future measures to prevent the dissemination of TSEs in animal and human populations. The development of infection models in natural hosts will also build national capacity to implement research programs that target host-pathogen interactions and the discovery of countermeasures. Results from such studies could directly translate into a better understanding of the potential for the transmissibility of animal TSEs to humans.

Problem Statement 7D: Diagnostics, Detection, and Surveillance

Important gaps remain in our arsenal of diagnostic tools to detect TSEs. Current diagnostic tests were validated for use only on post-mortem samples; sensitive ante mortem tests have yet to be developed. Because there is no detectable immune response or inflammation during the course of TSE infection, direct tests are needed to confirm a diagnosis. At present, only highly-infected tissues, such as brain material or lymph tissue, are suitable for providing accurate diagnoses.

Research Needs:

Diagnostic approaches currently in use include techniques such as immunohistochemistry (IHC), Western blot, and enzyme-linked immunosorbent assays (ELISA). IHC is one of the original tests developed and is considered the gold standard, but it is more labor intensive and time consuming than the other two, whereas the Western blot and particularly ELISA tests are more efficient for the initial screening of large numbers of samples. Another method is the Conformation-Dependent Immunoassay (CDI), currently a research technique that claims to discriminate between normal prion and the abnormal prion on the basis of its shape, but this has yet to be validated as a diagnostic test in animals. New


technologies and methods have been described using protein misfolding cyclic amplification techniques (PMCA), similar in concept to gene/DNA amplification, which effectively increases the concentration of prions in normal or pathological conformations. There is a critical need to improve diagnostics methods for surveillance, including the discovery of an ante mortem test for early detection and implementation of intervention strategies.

Anticipated Products:

TSE diagnostic test capable of detecting low levels of abnormal prions (i.e., key step to enable the development of an ante mortem test that can identify disease during the early stages of incubation).

Validation of existing biopsy-based TSE tests in goats, deer, and elk.

Rapid biochemical methods for strain typing.

Validated murine models for strain typing.

Improved diagnostics for TSEs in bodily fluids, including blood in host species where this might be possible.

Technologies to distinguish infectious prions from normal cellular prion proteins.

Determination of the prevalence of proteinase K sensitive prion in the various TSEs and potential of this form to cause disparate results between IHC, WB, and ELISA tests.

Potential Benefits:

The discovery of an ante mortem diagnostic test would enable the medical community to test and discover effective treatments in people. Importantly, new and improved diagnostic platforms and an ante mortem diagnostic test for susceptible livestock will enable early detection and the implementation of effective surveillance programs, a critical step that will allow the deployment of disease prevention measures.

Component 7 Resources:

The following ARS locations have research projects addressing the problem statements identified under Component 7:

Ames, IA

Albany, CA

Ames, IA

Pullman, WA

Prion gene sequence variation within diverse groups of U.S. sheep, beef cattle, and deer

Michael P. Heaton,1 Kreg A. Leymaster,1 Brad A. Freking,1 Deedra A. Hawk,2 Timothy P.L. Smith,1 John W. Keele,1 Warren M. Snelling,1 James M. Fox,1 Carol G. Chitko-McKown,1 William W. Laegreid1 1USDA, ARS, U.S. Meat Animal Research Center (MARC), State Spur 18D, P.O. Box 166, Clay Center, Nebraska 68933-0166, USA 2Wyoming Game and Fish Department, P.O. Box 3312, University Station, Laramie, Wyoming 82071, USA Received: 27 March 2003 / Accepted: 18 June 2003


Prions are proteins that play a central role in transmissible spongiform encephalopathies in a variety of mammals. Among the most notable prion disorders in ungulates are scrapie in sheep, bovine spongiform encephalopathy in cattle, and chronic wasting disease in deer. Single nucleotide polymorphisms in the sheep prion gene (PRNP) have been correlated with susceptibility to natural scrapie in some populations. Similar correlations have not been reported in cattle or deer; however, characterization of PRNP nucleotide diversity in those species is incomplete. This report describes nucleotide sequence variation and frequency estimates for the PRNP locus within diverse groups of U.S. sheep, U.S. beef cattle, and free-ranging deer (Odocoileus virginianus and O. hemionus from Wyoming). DNA segments corresponding to the complete prion coding sequence and a 596-bp portion of the PRNP promoter region were amplified and sequenced from DNA panels with 90 sheep, 96 cattle, and 94 deer. Each panel was designed to contain the most diverse germplasm available from their respective populations to facilitate polymorphism detection. Sequence comparisons identified a total of 86 polymorphisms. Previously unreported polymorphisms were identified in sheep (9), cattle (13), and deer (32). The number of individuals sampled within each population was sufficient to detect more than 95% of all alleles present at a frequency greater than 0.02. The estimation of PRNP allele and genotype frequencies within these diverse groups of sheep, cattle, and deer provides a framework for designing accurate genotype assays for use in genetic epidemiology, allele management, and disease control.

This result suggests that a genetic determinant in or near PRNP may influence susceptibility of cattle to atypical BSE. The causative allele(s) remains to be identified and probably occurs on the background of the implicated PRNP haplotype. Complete sequencing of PRNP from atypical BSE cases and BSE negative controls that both have the implicated haplotype may reveal PRNP alleles with predictive power for atypical BSE. The implicated haplotype itself does not effectively predict atypical BSE because of its frequency in healthy cattle. However, our results combined with the discovery of the PRNP K211 allele suggest that atypical BSE may be managed through the identification of cattle with known genetic risk factors for the disease and their removal from livestock populations.

FEED, FEED, FEED, WHAT ABOUT ATYPICAL BSE AND FEED ??? why not??? have you seen the tonnage in Alabama ???


confucius is confused again. food for thought. if our food system has gotten so xxxxxx up, instead of fixing the problems, it takes us now breeding genetic altered livestock for human and animal food production in defense to the many emerging and more virulent Transmissible Spongiform Encephalopathy in humans and animals, and if that does not work, what next, genetically altering humans to resist the TSE ? IS it so bad they cannot fix the problem ? ...TSS

>>> The significance of this finding isn’t the haplotype itself, but evidence that a majority of atypical BSE cases are attributable to underlying genetic susceptibility. This argues against a spontaneous origin for many atypical BSE cases. <<<

let's take a closer look at this new prionpathy or prionopathy, and then let's look at the g-h-BSEalabama mad cow.

This new prionopathy in humans? the genetic makeup is IDENTICAL to the g-h-BSEalabama mad cow, the only _documented_ mad cow in the world to date like this, ......wait, it get's better. this new prionpathy is killing young and old humans, with LONG DURATION from onset of symptoms to death, and the symptoms are very similar to nvCJD victims, OH, and the plaques are very similar in some cases too, bbbut, it's not related to the g-h-BSEalabama cow, WAIT NOW, it gets even better, the new human prionpathy that they claim is a genetic TSE, has no relation to any gene mutation in that family. daaa, ya think it could be related to that mad cow with the same genetic make-up ??? there were literally tons and tons of banned mad cow protein in Alabama in commerce, and none of it transmitted to cows, and the cows to humans there from ??? r i g h t $$$


In this study, we identified a novel mutation in the bovine prion protein gene (Prnp), called E211K, of a confirmed BSE positive cow from Alabama, United States of America. This mutation is identical to the E200K pathogenic mutation found in humans with a genetic form of CJD. This finding represents the first report of a confirmed case of BSE with a potential pathogenic mutation within the bovine Prnp gene. We hypothesize that the bovine Prnp E211K mutation most likely has caused BSE in "the approximately 10-year-old cow" carrying the E221K mutation.

Saturday, August 14, 2010

BSE Case Associated with Prion Protein Gene Mutation (g-h-BSEalabama) and VPSPr PRIONPATHY (see mad cow feed in COMMERCE IN ALABAMA...TSS)

Wednesday, July 28, 2010

re-Freedom of Information Act Project Number 3625-32000-086-05, Study of Atypical BSE UPDATE July 28, 2010

Saturday, June 12, 2010

PUBLICATION REQUEST AND FOIA REQUEST Project Number: 3625-32000-086-05 Study of Atypical Bse

Tuesday, August 03, 2010

Variably protease-sensitive prionopathy: A new sporadic disease of the prion protein

Monday, August 9, 2010

Variably protease-sensitive prionopathy: A new sporadic disease of the prion protein or just more PRIONBALONEY ?

Wednesday, August 18, 2010

Incidence of CJD Deaths Reported by CJD-SS in Canada as of July 31, 2010

Monday, August 9, 2010

National Prion Disease Pathology Surveillance Center Cases Examined (July 31, 2010)

(please watch and listen to the video and the scientist speaking about atypical BSE and sporadic CJD and listen to Professor Aguzzi)


>>> Up until about 6 years ago, the pt worked at Tyson foods where she worked on the assembly line, slaughtering cattle and preparing them for packaging. She was exposed to brain and spinal cord matter when she would euthanize the cattle. <<<

Irma Linda Andablo CJD Victim, she died at 38 years old on February 6, 2010 in Mesquite Texas

Irma Linda Andablo CJD Victim, she died at 38 years old on February 6, 2010 in Mesquite Texas. She left 6 Kids and a Husband. The Purpose of this web is to give information in Spanish to the Hispanic community, and to all the community who want's information about this terrible disease.-

Physician Discharge Summary, Parkland Hospital, Dallas Texas

Admit Date: 12/29/2009 Discharge Date: 1/20/2010

Attending Provider: Greenberg, Benjamin Morris;

General Neurology Team: General Neurology Team

Linda was a Hispanic female with no past medical history presents with 14 months of incresing/progressive altered mental status, generalized weakness, inability to walk, loss of appetite, inability to speak, tremor and bowel/blader incontinence. She was, in her usual state of health up until February, 2009, when her husbans notes that she began forgetting things like names and short term memories. He also noticed mild/vague personality changes such as increased aggression. In March, she was involved in a hit and run MVA,although she was not injured. The police tracked her down and ticketed her. At that time, her son deployed to Iraq with the Army and her husband assumed her mentation changes were due to stress over these two events. Also in March, she began to have weakness in her legs, making it difficult to walk. Over the next few months, her mentation and personality changes worsened, getting to a point where she could no longer recognized her children. She was eating less and less. She was losing more weight. In the last 2-3 months, she reached the point where she could not walk without an assist, then 1 month ago, she stopped talking, only making grunting/aggressive sounds when anyone came near her. She also became both bowel and bladder incontinent, having to wear diapers. Her '"tremor'" and body jerks worsened and her hands assumed a sort of permanent grip position, leading her family to put tennis balls in her hands to protect her fingers. The husband says that they have lived in Nebraska for the past 21 years. They had seen a doctor there during the summer time who prescribed her Seroquel and Lexapro, Thinking these were sx of a mood disorder. However, the medications did not help and she continued to deteriorate clinically. Up until about 6 years ago, the pt worked at Tyson foods where she worked on the assembly line, slaughtering cattle and preparing them for packaging. She was exposed to brain and spinal cord matter when she would euthanize the cattle. The husband says that he does not know any fellow workers with a similar illness. He also says that she did not have any preceeding illness or travel.

>>> Up until about 6 years ago, the pt worked at Tyson foods where she worked on the assembly line, slaughtering cattle and preparing them for packaging. She was exposed to brain and spinal cord matter when she would euthanize the cattle. <<<

Monday, March 29, 2010

Irma Linda Andablo CJD Victim, she died at 38 years old on February 6, 2010 in Mesquite Texas


Thursday, August 12, 2010

USA Blood products, collected from a donor who was at risk for vCJD, were distributed July-August 2010

Terry S. Singeltary Sr. has added the following comment: "According to the World Health Organisation, the future public health threat of vCJD in the UK and Europe and potentially the rest of the world is of concern and currently unquantifiable. However, the possibility of a significant and geographically diverse vCJD epidemic occurring over the next few decades cannot be dismissed .

The key word here is diverse. What does diverse mean?

If USA scrapie transmitted to USA bovine does not produce pathology as the UK c-BSE, then why would CJD from there look like UK vCJD?"

SEE FULL TEXT ;,F2400_P1001_PUB_MAIL_ID:1000,82101

.57 The experiment which might have determined whether BSE and scrapie were caused by the same agent (ie, the feeding of natural scrapie to cattle) was never undertaken in the UK. It was, however, performed in the USA in 1979, when it was shown that cattle inoculated with the scrapie agent endemic in the flock of Suffolk sheep at the United States Department of Agriculture in Mission, Texas, developed a TSE quite unlike BSE. 32 The findings of the initial transmission, though not of the clinical or neurohistological examination, were communicated in October 1988 to Dr Watson, Director of the CVL, following a visit by Dr Wrathall, one of the project leaders in the Pathology Department of the CVL, to the United States Department of Agriculture. 33 The results were not published at this point, since the attempted transmission to mice from the experimental cow brain had been inconclusive. The results of the clinical and histological differences between scrapie-affected sheep and cattle were published in 1995. Similar studies in which cattle were inoculated intracerebrally with scrapie inocula derived from a number of scrapie-affected sheep of different breeds and from different States, were carried out at the US National Animal Disease Centre. 34 The results, published in 1994, showed that this source of scrapie agent, though pathogenic for cattle, did not produce the same clinical signs of brain lesions characteristic of BSE.

32 Clark, W., Hourrigan, J. and Hadlow, W. (1995) Encephalopathy in Cattle Experimentally Infected with the Scrapie Agent, American Journal of Veterinary Research, 56, 606-12

33 YB88/10.00/1.1

34 Cutlip, R., Miller, J., Race, R., Jenny, A., Katz, J., Lehmkuhl, H., Debey, B. and Robinson, M. (1994) Intracerebral Transmission of Scrapie to Cattle, Journal of Infectious Diseases, 169, 814-20

Friday, August 27, 2010


Thursday, August 19, 2010

SCRAPIE CANADA UPDATE Current as of 2010-07-31 The following table lists sheep flocks and/or goat herds confirmed to be infected with scrapie in Canada in 2010.

Current as of: 2010-07-31

>>> may not be contagious and may, in fact, be a spontaneous degenerative condition of older sheep' (22). <<<

MAY, POSSIBLE, COULD BE, what kind of sound science is that $$$ it's putting the mad sheep disease cart before the human TSE horse.

SOUND SCIENCE and public health, should NOT be based on 'may not's, and 'may's'. BUT that is how the O.I.E. and the U.S.D.A. have operated for years and years. The whole mad cow debackle was based on 'may's' and 'may not's', and look where it has gotten us. The O.I.E. and the U.S.D.A. systematically changed T.S.E. science to meet their needs, i.e. TRADE, TRADE, TRADE $$$ HOW in the world, or the better question might be WHY would you put the cart before the horse so to speak with human and animal life, on a disease that we know is 100% fatal once exposed and clininal. THE theory of no transmission of typical scrapie to humans, this theory and any evidence there from is very thin to say the least. Let's look at some sound science on atypical Nor-98 Scrapie, shall we ;

[Although atypical scrapie is not yet ruled out, it is important to realize this is a type of scrapie that thus far has only tended to appear as a sporadic condition in older animals. Currently it has not been shown to follow the same genetic tendencies for propagation as the usual scrapie. However, the atypical phenotypic appearance has been shown to be preserved on experimental passage. Atypical scrapie was first identified in Norwegian sheep in 1998 and has subsequently been identified in many countries, as Australia may join that list. It is likely that this case will be sent to the UK for definitive conformation. [Ref: M Simmons, T Konold, L Thurston, et al. BMC Veterinary Research 2010, 6:14 [provisional abstract available at ]

"Background ----------- "Retrospective studies have identified cases predating the initial identification of this form of scrapie, and epidemiological studies have indicated that it does not conform to the behaviour of an infectious disease, giving rise to the hypothesis that it represents spontaneous disease. However, atypical scrapie isolates have been shown to be infectious experimentally, through intracerebral inoculation in transgenic mice and sheep. [Many of the neurological diseases can be transmitted by intracerebral inoculation, which causes this moderator to approach intracerebral studies as a tool for study, but not necessarily as a direct indication of transmissibility of natural diseases. - Mod.TG]

"The 1st successful challenge of a sheep with 'field' atypical scrapie from an homologous donor sheep was reported in 2007.

"Results -------- "This study demonstrates that atypical scrapie has distinct clinical, pathological, and biochemical characteristics which are maintained on transmission and sub-passage, and which are distinct from other strains of transmissible spongiform encephalopathies in the same host genotype.

"Conclusions ------------ Atypical scrapie is consistently transmissible within AHQ homozygous sheep, and the disease phenotype is preserved on sub-passage."

Lastly, this moderator wishes to thank Terry Singletary for some of his behind the scenes work of providing citations and references for this posting. - Mod.TG],F2400_P1001_PUB_MAIL_ID:1000,81729

Worryingly, a substantial proportion of such cases involved sheep with PrP genotypes known until now to confer natural resistance to conventional scrapie. Here we report that both Nor98 and discordant cases, including three sheep homozygous for the resistant PrPARR allele (A136R154R171), efficiently transmitted the disease to transgenic mice expressing ovine PrP, and that they shared unique biological and biochemical features upon propagation in mice. These observations support the view that a truly infectious TSE agent, unrecognized until recently, infects sheep and goat flocks and may have important implications in terms of scrapie control and public health.

Monday, December 14, 2009

Similarities between Forms of Sheep Scrapie and Creutzfeldt-Jakob Disease Are Encoded by Distinct Prion Types

(hmmm, this is getting interesting now...TSS)

Sporadic CJD type 1 and atypical/ Nor98 scrapie are characterized by fine (reticular) deposits,

see also ;

All of the Heidenhain variants were of the methionine/ methionine type 1 molecular subtype.

see full text ;

Monday, December 14, 2009

Similarities between Forms of Sheep Scrapie and Creutzfeldt-Jakob Disease Are Encoded by Distinct Prion Types

Tuesday, April 28, 2009

Nor98-like Scrapie in the United States of America

Wednesday, March 3, 2010



Aspects of the Cerebellar Neuropathology in Nor98

Gavier-Widén, D1; Benestad, SL2; Ottander, L1; Westergren, E1 1National Veterinary Insitute, Sweden; 2National Veterinary Institute,

Norway Nor98 is a prion disease of old sheep and goats. This atypical form of scrapie was first described in Norway in 1998. Several features of Nor98 were shown to be different from classical scrapie including the distribution of disease associated prion protein (PrPd) accumulation in the brain. The cerebellum is generally the most affected brain area in Nor98. The study here presented aimed at adding information on the neuropathology in the cerebellum of Nor98 naturally affected sheep of various genotypes in Sweden and Norway. A panel of histochemical and immunohistochemical (IHC) stainings such as IHC for PrPd, synaptophysin, glial fibrillary acidic protein, amyloid, and cell markers for phagocytic cells were conducted. The type of histological lesions and tissue reactions were evaluated. The types of PrPd deposition were characterized. The cerebellar cortex was regularly affected, even though there was a variation in the severity of the lesions from case to case. Neuropil vacuolation was more marked in the molecular layer, but affected also the granular cell layer. There was a loss of granule cells. Punctate deposition of PrPd was characteristic. It was morphologically and in distribution identical with that of synaptophysin, suggesting that PrPd accumulates in the synaptic structures. PrPd was also observed in the granule cell layer and in the white matter. The pathology features of Nor98 in the cerebellum of the affected sheep showed similarities with those of sporadic Creutzfeldt-Jakob disease in humans.

***The pathology features of Nor98 in the cerebellum of the affected sheep showed similarities with those of sporadic Creutzfeldt-Jakob disease in humans.



R. Nonno1, E. Esposito1, G. Vaccari1, E. Bandino2, M. Conte1, B. Chiappini1, S. Marcon1, M. Di Bari1, S.L. Benestad3, U. Agrimi1 1 Istituto Superiore di Sanità, Department of Food Safety and Veterinary Public Health, Rome, Italy (; 2 Istituto Zooprofilattico della Sardegna, Sassari, Italy; 3 National Veterinary Institute, Department of Pathology, Oslo, Norway

Molecular variants of PrPSc are being increasingly investigated in sheep scrapie and are generally referred to as "atypical" scrapie, as opposed to "classical scrapie". Among the atypical group, Nor98 seems to be the best identified. We studied the molecular properties of Italian and Norwegian Nor98 samples by WB analysis of brain homogenates, either untreated, digested with different concentrations of proteinase K, or subjected to enzymatic deglycosylation. The identity of PrP fragments was inferred by means of antibodies spanning the full PrP sequence. We found that undigested brain homogenates contain a Nor98-specific PrP fragment migrating at 11 kDa (PrP11), truncated at both the C-terminus and the N-terminus, and not N-glycosylated. After mild PK digestion, Nor98 displayed full-length PrP (FL-PrP) and N-glycosylated C-terminal fragments (CTF), along with increased levels of PrP11. Proteinase K digestion curves (0,006-6,4 mg/ml) showed that FL-PrP and CTF are mainly digested above 0,01 mg/ml, while PrP11 is not entirely digested even at the highest concentrations, similarly to PrP27-30 associated with classical scrapie. Above 0,2 mg/ml PK, most Nor98 samples showed only PrP11 and a fragment of 17 kDa with the same properties of PrP11, that was tentatively identified as a dimer of PrP11. Detergent solubility studies showed that PrP11 is insoluble in 2% sodium laurylsorcosine and is mainly produced from detergentsoluble, full-length PrPSc. Furthermore, among Italian scrapie isolates, we found that a sample with molecular and pathological properties consistent with Nor98 showed plaque-like deposits of PrPSc in the thalamus when the brain was analysed by PrPSc immunohistochemistry. Taken together, our results show that the distinctive pathological feature of Nor98 is a PrP fragment spanning amino acids ~ 90-155. This fragment is produced by successive N-terminal and C-terminal cleavages from a full-length and largely detergent-soluble PrPSc, is produced in vivo and is extremely resistant to PK digestion.

*** Intriguingly, these conclusions suggest that some pathological features of Nor98 are reminiscent of Gerstmann-Sträussler-Scheinker disease.


A newly identified type of scrapie agent can naturally infect sheep with resistant PrP genotypes

Annick Le Dur*,?, Vincent Béringue*,?, Olivier Andréoletti?, Fabienne Reine*, Thanh Lan Laï*, Thierry Baron§, Bjørn Bratberg¶, Jean-Luc Vilotte?, Pierre Sarradin**, Sylvie L. Benestad¶, and Hubert Laude*,?? +Author Affiliations

*Virologie Immunologie Moléculaires and ?Génétique Biochimique et Cytogénétique, Institut National de la Recherche Agronomique, 78350 Jouy-en-Josas, France; ?Unité Mixte de Recherche, Institut National de la Recherche Agronomique-Ecole Nationale Vétérinaire de Toulouse, Interactions Hôte Agent Pathogène, 31066 Toulouse, France; §Agence Française de Sécurité Sanitaire des Aliments, Unité Agents Transmissibles Non Conventionnels, 69364 Lyon, France; **Pathologie Infectieuse et Immunologie, Institut National de la Recherche Agronomique, 37380 Nouzilly, France; and ¶Department of Pathology, National Veterinary Institute, 0033 Oslo, Norway

***Edited by Stanley B. Prusiner, University of California, San Francisco, CA (received for review March 21, 2005)

Abstract Scrapie in small ruminants belongs to transmissible spongiform encephalopathies (TSEs), or prion diseases, a family of fatal neurodegenerative disorders that affect humans and animals and can transmit within and between species by ingestion or inoculation. Conversion of the host-encoded prion protein (PrP), normal cellular PrP (PrPc), into a misfolded form, abnormal PrP (PrPSc), plays a key role in TSE transmission and pathogenesis. The intensified surveillance of scrapie in the European Union, together with the improvement of PrPSc detection techniques, has led to the discovery of a growing number of so-called atypical scrapie cases. These include clinical Nor98 cases first identified in Norwegian sheep on the basis of unusual pathological and PrPSc molecular features and "cases" that produced discordant responses in the rapid tests currently applied to the large-scale random screening of slaughtered or fallen animals. Worryingly, a substantial proportion of such cases involved sheep with PrP genotypes known until now to confer natural resistance to conventional scrapie. Here we report that both Nor98 and discordant cases, including three sheep homozygous for the resistant PrPARR allele (A136R154R171), efficiently transmitted the disease to transgenic mice expressing ovine PrP, and that they shared unique biological and biochemical features upon propagation in mice.

*** These observations support the view that a truly infectious TSE agent, unrecognized until recently, infects sheep and goat flocks and may have important implications in terms of scrapie control and public health.

Monday, December 1, 2008

When Atypical Scrapie cross species barriers


Andreoletti O., Herva M. H., Cassard H., Espinosa J. C., Lacroux C., Simon S., Padilla D., Benestad S. L., Lantier F., Schelcher F., Grassi J., Torres, J. M., UMR INRA ENVT 1225, Ecole Nationale Veterinaire de Toulouse.France; ICISA-INlA, Madrid, Spain; CEA, IBiTec-5, DSV, CEA/Saclay, Gif sur Yvette cedex, France; National Veterinary Institute, Postboks 750 Sentrum, 0106 Oslo, Norway, INRA IASP, Centre INRA de Tours, 3738O Nouzilly, France.


Atypical scrapie is a TSE occurring in small ruminants and harbouring peculiar clinical, epidemiological and biochemical properties. Currently this form of disease is identified in a large number of countries. In this study we report the transmission of an atypical scrapie isolate through different species barriers as modeled by transgenic mice (Tg) expressing different species PRP sequence.

The donor isolate was collected in 1995 in a French commercial sheep flock. inoculation into AHQ/AHQ sheep induced a disease which had all neuro-pathological and biochemical characteristics of atypical scrapie. Transmitted into Transgenic mice expressing either ovine or PrPc, the isolate retained all the described characteristics of atypical scrapie.

Surprisingly the TSE agent characteristics were dramatically different v/hen passaged into Tg bovine mice. The recovered TSE agent had biological and biochemical characteristics similar to those of atypical BSE L in the same mouse model. Moreover, whereas no other TSE agent than BSE were shown to transmit into Tg porcine mice, atypical scrapie was able to develop into this model, albeit with low attack rate on first passage.

Furthermore, after adaptation in the porcine mouse model this prion showed similar biological and biochemical characteristics than BSE adapted to this porcine mouse model. Altogether these data indicate.

(i) the unsuspected potential abilities of atypical scrapie to cross species barriers

(ii) the possible capacity of this agent to acquire new characteristics when crossing species barrier

These findings raise some interrogation on the concept of TSE strain and on the origin of the diversity of the TSE agents and could have consequences on field TSE control measures.

Tuesday, April 28, 2009

Nor98-like Scrapie in the United States of America

Heidenhain Variant Creutzfeldt Jakob Disease autopsy case report 'MOM'

DIVISION OF NEUROPATHOLOGY University of Texas Medical Branch 114 McCullough Bldg. Galveston, Texas 77555-0785


DATE: 4-23-98

TO: Mr. Terry Singeltary @ -------

FROM: Gerald Campbell

FAX: (409) 772-5315 PHONE: (409) 772-2881

Number of Pages (including cover sheet):



This document accompanying this transmission contains confidential information belonging to the sender that is legally privileged. This information is intended only for the use of the individual or entry names above. If you are not the intended recipient, you are hereby notified that any disclosure, copying distribution, or the taking of any action in reliances on the contents of this telefaxed information is strictly prohibited. If you received this telefax in error, please notify us by telephone immediately to arrange for return of the original documents. -------------------------- Patient Account: 90000014-518 Med. Rec. No.: (0160)118511Q Patient Name: POULTER, BARBARA Age: 63 YRS DOB: 10/17/34 Sex: F Admitting Race: C

Attending Dr.: Date / Time Admitted : 12/14/97 1228 Copies to:

UTMB University of Texas Medical Branch Galveston, Texas 77555-0543 (409) 772-1238 Fax (409) 772-5683 Pathology Report

FINAL AUTOPSY DIAGNOSIS Autopsy' Office (409)772-2858

Autopsy NO.: AU-97-00435

AUTOPSY INFORMATION: Occupation: Unknown Birthplace: Unknown Residence: Crystal Beach Date/Time of Death: 12/14/97 13:30 Date/Time of Autopsy: 12/15/97 15:00 Pathologist/Resident: Pencil/Fernandez Service: Private Restriction: Brain only


I. Brain: Creutzfeldt-Jakob disease, Heidenhain variant.

Suspect symptoms

What if you can catch old-fashioned CJD by eating meat from a sheep infected with scrapie?

28 Mar 01

Like lambs to the slaughter 31 March 2001 by Debora MacKenzie Magazine issue 2284. Subscribe and get 4 free issues. FOUR years ago, Terry Singeltary watched his mother die horribly from a degenerative brain disease. Doctors told him it was Alzheimer's, but Singeltary was suspicious. The diagnosis didn't fit her violent symptoms, and he demanded an autopsy. It showed she had died of sporadic Creutzfeldt-Jakob disease.

Most doctors believe that sCJD is caused by a prion protein deforming by chance into a killer. But Singeltary thinks otherwise. He is one of a number of campaigners who say that some sCJD, like the variant CJD related to BSE, is caused by eating meat from infected animals. Their suspicions have focused on sheep carrying scrapie, a BSE-like disease that is widespread in flocks across Europe and North America.

Now scientists in France have stumbled across new evidence that adds weight to the campaigners' fears. To their complete surprise, the researchers found that one strain of scrapie causes the same brain damage in mice as sCJD.

"This means we cannot rule out that at least some sCJD may be caused by some strains of scrapie," says team member Jean-Philippe Deslys of the French Atomic Energy Commission's medical research laboratory in Fontenay-aux-Roses, south-west of Paris. Hans Kretschmar of the University of Göttingen, who coordinates CJD surveillance in Germany, is so concerned by the findings that he now wants to trawl back through past sCJD cases to see if any might have been caused by eating infected mutton or lamb.

Scrapie has been around for centuries and until now there has been no evidence that it poses a risk to human health. But if the French finding means that scrapie can cause sCJD in people, countries around the world may have overlooked a CJD crisis to rival that caused by BSE.

Deslys and colleagues were originally studying vCJD, not sCJD. They injected the brains of macaque monkeys with brain from BSE cattle, and from French and British vCJD patients. The brain damage and clinical symptoms in the monkeys were the same for all three. Mice injected with the original sets of brain tissue or with infected monkey brain also developed the same symptoms.

As a control experiment, the team also injected mice with brain tissue from people and animals with other prion diseases: a French case of sCJD; a French patient who caught sCJD from human-derived growth hormone; sheep with a French strain of scrapie; and mice carrying a prion derived from an American scrapie strain. As expected, they all affected the brain in a different way from BSE and vCJD. But while the American strain of scrapie caused different damage from sCJD, the French strain produced exactly the same pathology.

"The main evidence that scrapie does not affect humans has been epidemiology," says Moira Bruce of the neuropathogenesis unit of the Institute for Animal Health in Edinburgh, who was a member of the same team as Deslys. "You see about the same incidence of the disease everywhere, whether or not there are many sheep, and in countries such as New Zealand with no scrapie." In the only previous comparisons of sCJD and scrapie in mice, Bruce found they were dissimilar.

But there are more than 20 strains of scrapie, and six of sCJD. "You would not necessarily see a relationship between the two with epidemiology if only some strains affect only some people," says Deslys. Bruce is cautious about the mouse results, but agrees they require further investigation. Other trials of scrapie and sCJD in mice, she says, are in progress.

People can have three different genetic variations of the human prion protein, and each type of protein can fold up two different ways. Kretschmar has found that these six combinations correspond to six clinical types of sCJD: each type of normal prion produces a particular pathology when it spontaneously deforms to produce sCJD.

But if these proteins deform because of infection with a disease-causing prion, the relationship between pathology and prion type should be different, as it is in vCJD. "If we look at brain samples from sporadic CJD cases and find some that do not fit the pattern," says Kretschmar, "that could mean they were caused by infection."

There are 250 deaths per year from sCJD in the US, and a similar incidence elsewhere. Singeltary and other US activists think that some of these people died after eating contaminated meat or "nutritional" pills containing dried animal brain. Governments will have a hard time facing activists like Singeltary if it turns out that some sCJD isn't as spontaneous as doctors have insisted.

Deslys's work on macaques also provides further proof that the human disease vCJD is caused by BSE. And the experiments showed that vCJD is much more virulent to primates than BSE, even when injected into the bloodstream rather than the brain. This, says Deslys, means that there is an even bigger risk than we thought that vCJD can be passed from one patient to another through contaminated blood transfusions and surgical instruments.

Sunday, August 29, 2010

Prion Disease Round Table Conducted Wednesday December 11, 2003 at Denver, Colorado R-CALF-USA Sponsored (REVISITED AUGUST 2010)

From: Terry S. Singeltary Sr.

Sent: Sunday, August 29, 2010 11:49 AM

Subject: Prion Disease Round Table Conducted Wednesday December 11, 2003 at Denver, Colorado R-CALF-USA Sponsored (REVISITED AUGUST 2010)


Below is the full text (unedited version) of the Prion Round Table Conducted Wednesday December 11, 2003 at Denver, Colorado R-CALF-USA Sponsored (REVISITED AUGUST 2010 by me). Periodically, I will comment on science that has changed since this Prion Round Table, and will reference the update scientific data. So the full text of the 2003 PRION ROUND TABLE IS HERE, but is broke up intermittently with my comments and updated scientific facts. It is interested for sure, to see the thought process in 2003 by the Government and the Industry, and compare to today. The ever emerging TSE science is changing, mutating and becoming more virulent, but sadly, the SSS policy is still going strong in the USA. OF course, Canada is finding cases, they are the only ones searching for cases in North America. Ramifications from all this, human TSE i.e. CJD and the new prionopathy there from is on the rise. ...TSS

Prion Disease Round Table Conducted Wednesday December 11, 2003 at Denver, Colorado R-CALF-USA Sponsored (REVISITED AUGUST 2010)

R-CALF-USA Sponsored Prion Disease Round Table Conducted Wednesday December 11, 2003 at Denver, Colorado

On Thursday, December 11, 2003, R-CALF-USA and a number of its affiliate cattle organizations sponsored a Prion Disease Roundtable in Denver, Colorado. Dr. R. M. Thornsberry, President of the Missouri Stockgrower’s Association was commissioned by R-CALF President Leo McDonnel to organize the roundtable and invite prion specialists to present information at the roundtable that would benefit the education of livestock producers throughout the United States.

Dr. Stanley Prusiner, the scientist who discovered prions, for which he won the Nobel Prize in medicine, was invited to the roundtable. Notes from Dr. Prusiner’s presentation on prions and prion diseases were presented to the roundtable by Dr. Thornsberry, who had attended one of Dr. Prusiner’s lectures on prion diseases. Although unable to attend the roundtable, Dr. Prusiner provided the roundtable with five papers published in prestigious peer reviewed medical and science journals. These papers were provided to all the attendees and key points from these papers were discussed at the beginning of the roundtable discussion. Dr. Prusiner emphasized normal cooking temperatures do not inactivate prions. This point is especially important when humans are exposed to Bovine Spongiform Encephalopathy (BSE) prions in the normal process of consuming beef muscle cuts that may contain significant nerve tissue. Dr. Prusiner’s laboratory is currently developing a live animal test to determine whether or not an animal is carrying BSE prions prior to entering the food chain for human consumption.

Dr. Jason Bartz, an applied science researcher from Creighton University, Omaha, Nebraska, was the second presenter at the roundtable. Dr. Bartz presented current research data on prion diseases and particularly outlined the pathogenesis of prion diseases. Dr. Bartz presented data that defined the ability of prions to replicate in secondary lymphoreticular system tissues, and the ability of prions to travel throughout the nervous system, finally locating within the brain or brain stem tissues where pathological changes occur. Dr. Bartz also presented data to illustrate the severity of prion disease appears to increase as the disease is passed from animal to animal. Dr. Bartz presented data to illustrate the infectivity and persistency of prions. Prions in brain tissue were heated to 600 degrees Celsius--that is over 1200 degrees Fahrenheit--and injected into brain tissue. These heat treated prions were still capable of causing prion disease changes. In other words, there is no commonly utilized method with which to inactivate prions on surgical instruments, surfaces, pens, corrals, chutes, ground, etc. Dr. Bartz also presented data that indicates tongue lesions or sores provide the mechanism for prions to enter brain tissue through the nerve that supplies the muscle tissue of an animal’s tongue. ...snip...end...(TSS/2010)

Completely Edited Version


snip...see full text ;

2.65 At its hearing on 14 May 2010, the committee heard evidence from Dr Alan Fahey who has recently submitted a thesis on the clinical neuropsychiatric, epidemiological and diagnostic features of Creutzfeldt-Jakob disease.48 Dr Fahey told the committee of his concerns regarding the lengthy incubation period for transmissible spongiform encephalopathies, the inadequacy of current tests and the limited nature of our current understanding of this group of diseases.49

2.66 Dr Fahey also told the committee that in the last two years a link has been established between forms of atypical CJD and atypical BSE. Dr Fahey said that: They now believe that those atypical BSEs overseas are in fact causing sporadic Creutzfeldt-Jakob disease. They were not sure if it was due to mad sheep disease or a different form. If you look in the textbooks it looks like this is just arising by itself. But in my research I have a summary of a document which states that there has never been any proof that sporadic Creutzfeldt-Jakob disease has arisen de novo—has arisen of itself. There is no proof of that. The recent research is that in fact it is due to atypical forms of mad cow disease which have been found across Europe, have been found in America and have been found in Asia. These atypical forms of mad cow disease typically have even longer incubation periods than the classical mad cow disease.50

Tuesday, March 16, 2010



Proof Committee Hansard

RRA&T 2 Senate Friday, 5 February 2010


[9.03 am]

BELLINGER, Mr Brad, Chairman, Australian Beef Association

CARTER, Mr John Edward, Director, Australian Beef Association

CHAIR—Welcome. Would you like to make an opening statement?

Mr Bellinger—Thank you. The ABA stands by its submission, which we made on 14 December last year, that the decision made by the government to allow the importation of beef from BSE affected countries is politically based, not science based. During this hearing we will bring forward compelling new evidence to back up this statement. When I returned to my property after the December hearing I received a note from an American citizen. I will read a small excerpt from the mail he sent me in order to reinforce the dangers of allowing the importation of beef from BSE affected countries. I have done a number of press releases on this topic, and this fellow has obviously picked my details up from the internet. His name is Terry Singeltary and he is from Bacliff, Texas. He states, and rightfully so:

You should be worried. Please let me explain. I’ve kept up with the mad cow saga for 12 years today, on December 14th 1997, some four months post voluntary and partial mad cow feed ban in the USA, I lost my mother to the Heidenhain variant Creutzfeldt-Jakob disease (CJD). I know this is just another phenotype of the infamous sporadic CJDs. Here in the USA, when USA sheep scrapie was transmitted to USA bovine, the agent was not UK BSE—it was a different strain. So why then would human TSE from USA cattle look like UK CJD from UK BSE? It would not. So this accentuates that the science is inconclusive still on this devastating disease. He goes on to state:

The OIE— the International Organisation of Epizootics, the arm of the WTO— is a failed global agent that in my opinion is bought off via bogus regulations for global trade and industry reps. I have done this all these years for nothing but the truth. I am a consumer, I eat meat, but I do not have to sit idly by and see the ignorance and greed of it all while countless numbers of humans and animals are being exposed to the TSE agents. All the USA is interested in is trade, nothing else matters.

Even Dr Stanley Prusiner, who incidentally won the Nobel Health Prize in 1997 for his work on the prion—he invented the word ‘prion’, or it came from him—states:

The BSC policy was set up for one purpose only, trade—the illegal trading of all strains of TSE globally throughout North America, which is home to CBSC, IBSC and HBSC, many scrapie strains and two strains of CJD to date. (please note typo error, those should have read cBSE, lBSE, and hBSE...tss)

I would also like, while I have the opportunity, to explain the beef-off-the-shelves myth. At the first Senate hearing on 14 December, it was explained that the reason why they allowed BSC beef into Australia was the beef-off-the-shelves policy, whereby if we found a case of BSC in Australia they would have to recall all—

Friday, 5 February 2010 Senate RRA&T 3


Senator HEFFERNAN—Which of course is total BS.

Mr Bellinger—Correct. This is written in the FSANZ document—Food Standards Australia New Zealand. Why isn’t this same policy in New Zealand? It is not—it is only in Australia. We are the only country in the world to have this idiotic policy. So we again call for the tabling of the WTO obligations paperwork. We do not believe that exists.

snip...see full text 110 pages ;

for those interested, please see much more here ;

Saturday, June 19, 2010


Sunday, September 6, 2009



Molecular characterization of BSE in Canada

Jianmin Yang1, Sandor Dudas2, Catherine Graham2, Markus Czub3, Tim McAllister1, Stefanie Czub1 1Agriculture and Agri-Food Canada Research Centre, Canada; 2National and OIE BSE Reference Laboratory, Canada; 3University of Calgary, Canada

Background: Three BSE types (classical and two atypical) have been identified on the basis of molecular characteristics of the misfolded protein associated with the disease. To date, each of these three types have been detected in Canadian cattle.

Objectives: This study was conducted to further characterize the 16 Canadian BSE cases based on the biochemical properties of there associated PrPres. Methods: Immuno-reactivity, molecular weight, glycoform profiles and relative proteinase K sensitivity of the PrPres from each of the 16 confirmed Canadian BSE cases was determined using modified Western blot analysis.

Results: Fourteen of the 16 Canadian BSE cases were C type, 1 was H type and 1 was L type. The Canadian H and L-type BSE cases exhibited size shifts and changes in glycosylation similar to other atypical BSE cases. PK digestion under mild and stringent conditions revealed a reduced protease resistance of the atypical cases compared to the C-type cases. N terminal- specific antibodies bound to PrPres from H type but not from C or L type. The C-terminal-specific antibodies resulted in a shift in the glycoform profile and detected a fourth band in the Canadian H-type BSE.

Discussion: The C, L and H type BSE cases in Canada exhibit molecular characteristics similar to those described for classical and atypical BSE cases from Europe and Japan. This supports the theory that the importation of BSE contaminated feedstuff is the source of C-type BSE in Canada. It also suggests a similar cause or source for atypical BSE in these countries.

Wednesday, August 11, 2010


Thursday, August 19, 2010


14th ICID International Scientific Exchange Brochure -

Final Abstract Number: ISE.114

Session: International Scientific Exchange

Transmissible Spongiform encephalopathy (TSE) animal and human TSE in North America

update October 2009

T. Singeltary

Bacliff, TX, USA


An update on atypical BSE and other TSE in North America. Please remember, the typical U.K. c-BSE, the atypical l-BSE (BASE), and h-BSE have all been documented in North America, along with the typical scrapie's, and atypical Nor-98 Scrapie, and to date, 2 different strains of CWD, and also TME. All these TSE in different species have been rendered and fed to food producing animals for humans and animals in North America (TSE in cats and dogs ?), and that the trading of these TSEs via animals and products via the USA and Canada has been immense over the years, decades.


12 years independent research of available data


I propose that the current diagnostic criteria for human TSEs only enhances and helps the spreading of human TSE from the continued belief of the UKBSEnvCJD only theory in 2009. With all the science to date refuting it, to continue to validate this old myth, will only spread this TSE agent through a multitude of potential routes and sources i.e. consumption, medical i.e., surgical, blood, dental, endoscopy, optical, nutritional supplements, cosmetics etc.


I would like to submit a review of past CJD surveillance in the USA, and the urgent need to make all human TSE in the USA a reportable disease, in every state, of every age group, and to make this mandatory immediately without further delay. The ramifications of not doing so will only allow this agent to spread further in the medical, dental, surgical arena's. Restricting the reporting of CJD and or any human TSE is NOT scientific. Iatrogenic CJD knows NO age group, TSE knows no boundaries. I propose as with Aguzzi, Asante, Collinge, Caughey, Deslys, Dormont, Gibbs, Gajdusek, Ironside, Manuelidis, Marsh, et al and many more, that the world of TSE Transmissible Spongiform Encephalopathy is far from an exact science, but there is enough proven science to date that this myth should be put to rest once and for all, and that we move forward with a new classification for human and animal TSE that would properly identify the infected species, the source species, and then the route.

To date the OIE/WAHO assumes that the human and animal health standards set out in the BSE chapter for classical BSE (C-Type) applies to all forms of BSE which include the H-type and L-type atypical forms. This assumption is scientifically not completely justified and accumulating evidence suggests that this may in fact not be the case. Molecular characterization and the spatial distribution pattern of histopathologic lesions and immunohistochemistry (IHC) signals are used to identify and characterize atypical BSE. Both the L-type and H-type atypical cases display significant differences in the conformation and spatial accumulation of the disease associated prion protein (PrPSc) in brains of afflicted cattle. Transmission studies in bovine transgenic and wild type mouse models support that the atypical BSE types might be unique strains because they have different incubation times and lesion profiles when compared to C-type BSE. When L-type BSE was inoculated into ovine transgenic mice and Syrian hamster the resulting molecular fingerprint had changed, either in the first or a subsequent passage, from L-type into C-type BSE. In addition, non-human primates are specifically susceptible for atypical BSE as demonstrated by an approximately 50% shortened incubation time for L-type BSE as compared to C-type. Considering the current scientific information available, it cannot be assumed that these different BSE types pose the same human health risks as C-type BSE or that these risks are mitigated by the same protective measures.

Wednesday, March 31, 2010

Atypical BSE in Cattle

Friday, May 14, 2010

Prion Strain Mutation Determined by Prion Protein Conformational Compatibility and Primary Structure

Published Online May 13, 2010 Science DOI: 10.1126/science.1187107 Science Express Index

Thursday, June 03, 2010

Prion Strain Mutation and Selection John Collinge MEDICINE



Chad Johnson1, Judd Aiken2,3,4 and Debbie McKenzie4,5 1 Department of Comparative Biosciences, University of Wisconsin, Madison WI, USA 53706 2 Department of Agriculture, Food and Nutritional Sciences, 3 Alberta Veterinary Research Institute, 4.Center for Prions and Protein Folding Diseases, 5 Department of Biological Sciences, University of Alberta, Edmonton AB, Canada T6G 2P5

The identification and characterization of prion strains is increasingly important for the diagnosis and biological definition of these infectious pathogens. Although well-established in scrapie and, more recently, in BSE, comparatively little is known about the possibility of prion strains in chronic wasting disease (CWD), a disease affecting free ranging and captive cervids, primarily in North America. We have identified prion protein variants in the white-tailed deer population and demonstrated that Prnp genotype affects the susceptibility/disease progression of white-tailed deer to CWD agent. The existence of cervid prion protein variants raises the likelihood of distinct CWD strains. Small rodent models are a useful means of identifying prion strains. We intracerebrally inoculated hamsters with brain homogenates and phosphotungstate concentrated preparations from CWD positive hunter-harvested (Wisconsin CWD endemic area) and experimentally infected deer of known Prnp genotypes. These transmission studies resulted in clinical presentation in primary passage of concentrated CWD prions. Subclinical infection was established with the other primary passages based on the detection of PrPCWD in the brains of hamsters and the successful disease transmission upon second passage. Second and third passage data, when compared to transmission studies using different CWD inocula (Raymond et al., 2007) indicate that the CWD agent present in the Wisconsin white-tailed deer population is different than the strain(s) present in elk, mule-deer and white-tailed deer from the western United States endemic region.


Susceptibility of Cattle to First-passage Intracerebral Inoculation with Chronic Wasting Disease Agent from White-tailed Deer

A. N. Hamir1, J. M. Miller1, R. A. Kunkle1, S. M. Hall2 and J. A. Richt1 + Author Affiliations

1National Animal Disease Center, ARS, USDA, Ames, IA 2Pathobiology Laboratory, National Veterinary Services Laboratories, Ames, IA Dr. A. N. Hamir, National Animal Disease Center, ARS, USDA, 2300 Dayton Avenue, PO Box 70, Ames, IA 50010 (USA). E-mail: Abstract Fourteen, 3-month-old calves were intracerebrally inoculated with the agent of chronic wasting disease (CWD) from white-tailed deer (CWDwtd) to compare the clinical signs and neuropathologic findings with those of certain other transmissible spongiform encephalopathies (TSE, prion diseases) that have been shown to be experimentally transmissible to cattle (sheep scrapie, CWD of mule deer [CWDmd], bovine spongiform encephalopathy [BSE], and transmissible mink encephalopathy). Two uninoculated calves served as controls. Within 26 months postinoculation (MPI), 12 inoculated calves had lost considerable weight and eventually became recumbent. Of the 12 inoculated calves, 11 (92%) developed clinical signs. Although spongiform encephalopathy (SE) was not observed, abnormal prion protein (PrPd) was detected by immunohistochemistry (IHC) and Western blot (WB) in central nervous system tissues. The absence of SE with presence of PrPd has also been observed when other TSE agents (scrapie and CWDmd) were similarly inoculated into cattle. The IHC and WB findings suggest that the diagnostic techniques currently used to confirm BSE would detect CWDwtd in cattle, should it occur naturally. Also, the absence of SE and a distinctive IHC pattern of CWDwtd and CWDmd in cattle suggests that it should be possible to distinguish these conditions from other TSEs that have been experimentally transmitted to cattle.

second passage is even worse ;

Experimental Second Passage of Chronic Wasting Disease (CWDmule deer) Agent to Cattle

A. N. Hamir, R. A. Kunkle, J. M. Miller, J. J. Greenlee and J. A. Richt Agricultural Research Service, United States Department of Agriculture, National Animal Disease Center, 2300 Dayton Avenue, P.O. Box 70, Ames, IA 50010, USA


To compare clinicopathological findings in first and second passage chronic wasting disease (CWDmule deer) in cattle, six calves were inoculated intracerebrally with brain tissue derived froma first-passageCWD-affected calf in an earlier experiment. Two uninoculated calves served as controls. The inoculated animals began to lose both appetite and weight 10–12 months later, and five subsequently developed clinical signs of central nervous system (CNS) abnormality. By 16.5 months, all cattle had been subjected to euthanasia because of poor prognosis. None of the animals showed microscopical lesions of spongiform encephalopathy (SE) but PrPres was detected in their CNS tissues by immunohistochemistry (IHC) and rapid Western blot (WB) techniques. Thus, intracerebrally inoculated cattle not only amplified CWD PrPres from mule deer but also developed clinicalCNSsigns in the absence of SElesions.This situation has also been shown to occur in cattle inoculated with the scrapie agent. The study confirmed that the diagnostic techniques currently used for diagnosis of bovine spongiformencephalopathy (BSE) in theUS would detect CWDin cattle, should it occur naturally. Furthermore, it raised the possibility of distinguishing CWDfromBSE in cattle, due to the absence of neuropathological lesions and to a distinctive multifocal distribution of PrPres, as demonstrated by IHC which, in this study, appeared to be more sensitive than the WB technique. Published by Elsevier Ltd. Keywords: cattle; chronic wasting disease (CWD); deer; transmissible spongiform encephalopathy (TSE)


Discussion CWD, like all other TSEs, is characterized by a long incubation period, which in deer is seldom less than 18 months (Williams and Young, 1992). In an experimental study of cattle inoculated intracerebrally with CWD from mule deer (first passage), amplification of PrPres was demonstrated in only five of 13 (38%) cattle, after incubation periods that ranged from 23 to 63 months (Hamir et al., 2001a, 2005a). In contrast, all inoculated cattle in the present study were positive for PrPres within 16.5 months. This increased attack rate with shorter incubation periods probably indicates adaptation of the CWDmule deer agent to a new host.


The uniform susceptibility, relatively short incubation, and absence of microscopical lesions in cattle given CWD brain material passaged once through cattle resembled findings in cattle inoculated intracerebrally with the scrapie agent (Cutlip et al., 1997). In that experiment, 100% of cattle died 14–18 months after inoculation with material from the first cattle-passage of a US strain of the scrapie agent; none showed microscopical lesions and all were positive for PrPres.

Sunday, April 12, 2009

CWD UPDATE Infection Studies in Two Species of Non-Human Primates and one Environmental reservoir infectivity study and evidence of two strains

Thursday, April 03, 2008

A prion disease of cervids: Chronic wasting disease

2008 1: Vet Res. 2008 Apr 3;39(4):41

A prion disease of cervids: Chronic wasting disease

Sigurdson CJ.


*** twenty-seven CJD patients who regularly consumed venison were reported to the Surveillance Center***,


full text ;

From: TSS (


Date: September 30, 2002 at 7:06 am PST

From: "Belay, Ermias"


Cc: "Race, Richard (NIH)" ; ; "Belay,


Sent: Monday, September 30, 2002 9:22 AM


Dear Sir/Madam,

In the Archives of Neurology you quoted (the abstract of which was attached to your email), we did not say CWD in humans will present like variant CJD.

That assumption would be wrong. I encourage you to read the whole article and call me if you have questions or need more clarification (phone: 404-639-3091).

Also, we do not claim that "no-one has ever been infected with prion disease from eating venison." Our conclusion stating that we found no strong evidence of CWD transmission to humans in the article you quoted or in any other forum is limited to the patients we investigated.

Ermias Belay, M.D.

Centers for Disease Control and Prevention

-----Original Message-----


Sent: Sunday, September 29, 2002 10:15 AM

To:;; ebb8@CDC.GOV



Sunday, November 10, 2002 6:26 PM ......snip........end..............TSS

SEE also ;

A. Aguzzi - Chronic Wasting Disease (CWD) also needs to be addressed. Most serious because of rapid horizontal spread and higher prevalence than BSE in UK, up to 15% in some populations. Also may be a risk to humans - evidence that it is not dangerous to humans is thin.


Chronic Wasting Disease and Potential Transmission to Humans

Ermias D. Belay,* Ryan A. Maddox,* Elizabeth S. Williams,? Michael W. Miller,? Pierluigi Gambetti,§ and Lawrence B. Schonberger*

*Centers for Disease Control and Prevention, Atlanta, Georgia, USA; ?University of Wyoming, Laramie, Wyoming, USA; ?Colorado Division of Wildlife, Fort Collins, Colorado, USA; and §Case Western Reserve University, Cleveland, Ohio, USA

Suggested citation for this article: Belay ED, Maddox RA, Williams ES, Miller MW, Gambetti P, Schonberger LB. Chronic wasting disease and potential transmission to humans. Emerg Infect Dis [serial on the Internet]. 2004 Jun [date cited]. Available from:

Friday, May 14, 2010 Prion Strain Mutation Determined by Prion Protein Conformational Compatibility and Primary Structure Published Online May 13, 2010 Science DOI: 10.1126/science.1187107 Science Express Index

Tuesday, July 27, 2010

Spontaneous generation of mammalian prions

Thursday, August 12, 2010

Seven main threats for the future linked to prions

Newsdesk The Lancet Infectious Diseases, Volume 3, Issue 8, Page 463, August 2003 doi:10.1016/S1473-3099(03)00715-1Cite or Link Using DOI

Tracking spongiform encephalopathies in North America

Xavier Bosch

“My name is Terry S Singeltary Sr, and I live in Bacliff, Texas. I lost my mom to hvCJD (Heidenhain variant CJD) and have been searching for answers ever since. What I have found is that we have not been told the truth. CWD in deer and elk is a small portion of a much bigger problem.” 49-year-old Singeltary is one of a number of people who have remained largely unsatisfied after being told that a close relative died from a rapidly progressive dementia compatible with spontaneous Creutzfeldt-Jakob disease (CJD). So he decided to gather hundreds of documents on transmissible spongiform encephalopathies (TSE) and realised that if Britons could get variant CJD from bovine spongiform encephalopathy (BSE), Americans might get a similar disorder from chronic wasting disease (CWD)—the relative of mad cow disease seen among deer and elk in the USA. Although his feverish…

and then i had a few bits published here on the same topic over the next decade or so ;


MARCH 26, 2003

RE-Monitoring the occurrence of emerging forms of Creutzfeldt-Jakob disease in the United States

Email Terry S. Singeltary:

[log in to unmask]

I lost my mother to hvCJD (Heidenhain Variant CJD). I would like to comment on the CDC's attempts to monitor the occurrence of emerging forms of CJD. Asante, Collinge et al [1] have reported that BSE transmission to the 129-methionine genotype can lead to an alternate phenotype that is indistinguishable from type 2 PrPSc, the commonest sporadic CJD. However, CJD and all human TSEs are not reportable nationally. CJD and all human TSEs must be made reportable in every state and internationally. I hope that the CDC does not continue to expect us to still believe that the 85%+ of all CJD cases which are sporadic are all spontaneous, without route/source. We have many TSEs in the USA in both animal and man. CWD in deer/elk is spreading rapidly and CWD does transmit to mink, ferret, cattle, and squirrel monkey by intracerebral inoculation. With the known incubation periods in other TSEs, oral transmission studies of CWD may take much longer. Every victim/family of CJD/TSEs should be asked about route and source of this agent. To prolong this will only spread the agent and needlessly expose others. In light of the findings of Asante and Collinge et al, there should be drastic measures to safeguard the medical and surgical arena from sporadic CJDs and all human TSEs. I only ponder how many sporadic CJDs in the USA are type 2 PrPSc?

Diagnosis and Reporting of Creutzfeldt-Jakob Disease Singeltary, Sr et al. JAMA.2001; 285: 733-734. Vol. 285 No. 6, February 14, 2001 JAMA

Diagnosis and Reporting of Creutzfeldt-Jakob Disease

To the Editor: In their Research Letter, Dr Gibbons and colleagues1 reported that the annual US death rate due to Creutzfeldt-Jakob disease (CJD) has been stable since 1985. These estimates, however, are based only on reported cases, and do not include misdiagnosed or preclinical cases. It seems to me that misdiagnosis alone would drastically change these figures. An unknown number of persons with a diagnosis of Alzheimer disease in fact may have CJD, although only a small number of these patients receive the postmortem examination necessary to make this diagnosis. Furthermore, only a few states have made CJD reportable. Human and animal transmissible spongiform encephalopathies should be reportable nationwide and internationally.

Terry S. Singeltary, Sr Bacliff, Tex

1. Gibbons RV, Holman RC, Belay ED, Schonberger LB. Creutzfeldt-Jakob disease in the United States: 1979-1998. JAMA. 2000;284:2322-2323. FREE FULL TEXT

2 January 2000

British Medical Journal

U.S. Scientist should be concerned with a CJD epidemic in the U.S., as well

15 November 1999

British Medical Journal vCJD in the USA * BSE in U.S.


BY Philip Yam

Yam Philip Yam News Editor Scientific American

Answering critics like Terry Singeltary, who feels that the U.S. under- counts CJD, Schonberger conceded that the current surveillance system has errors but stated that most of the errors will be confined to the older population.


Laying Odds

Are prion diseases more prevalent than we thought?

Researchers and government officials badly underestimated the threat that mad cow disease posed when it first appeared in Britain. They didn’t think bovine spongiform encephalopathy was a zoonosis—an animal disease that can sicken people. The 1996 news that BSE could infect humans with a new form of Creutzfeldt-Jakob disease stunned the world. It also got some biomedical researchers wondering whether sporadic CJD may really be a manifestation of a zoonotic sickness. Might it be caused by the ingestion of prions, as variant CJD is?

Revisiting Sporadic CJD

It’s not hard to get Terry Singeltary going. “I have my conspiracy theories,” admitted the 49-year-old Texan.1 Singeltary is probably the nation’s most relentless consumer advocate when it comes to issues in prion diseases. He has helped families learn about the sickness and coordinated efforts with support groups such as CJD Voice and the CJD Foundation. He has also connected with others who are critical of the American way of handling the threat of prion diseases. Such critics include Consumers Union’s Michael Hansen, journalist John Stauber, and Thomas Pringle, who used to run the voluminous www.madcow. org Web site. These three lend their expertise to newspaper and magazine stories about prion diseases, and they usually argue that prions represent more of a threat than people realize, and that the government has responded poorly to the dangers because it is more concerned about protecting the beef industry than people's health.

Singeltary has similar inclinations. ...

DER SPIEGEL (9/2001) - 24.02.2001 (9397 Zeichen) USA: Loch in der Mauer Die BSE-Angst erreicht Amerika: Trotz strikter Auflagen gelangte in Texas verbotenes Tiermehl ins Rinderfutter - die Kontrollen der Aufsichtsbehördensind lax.Link auf diesen Artikel im Archiv:

"Löcher wie in einem Schweizer Käse" hat auch Terry Singeltary im Regelwerk der FDA ausgemacht. Der Texaner kam auf einem tragischen Umweg zu dem Thema: Nachdem seine Mutter 1997 binnen weniger Wochen an der Creutzfeldt-Jakob-Krankheit gestorben war, versuchte er, die Ursachen der Infektion aufzuspüren. Er klagte auf die Herausgabe von Regierungsdokumenten und arbeitete sich durch Fachliteratur; heute ist er überzeugt, dass seine Mutter durch die stetige Einnahme von angeblich kräftigenden Mitteln erkrankte, in denen - völlig legal - Anteile aus Rinderprodukten enthalten sind.

Von der Fachwelt wurde Singeltary lange als versponnener Außenseiter belächelt. Doch mittlerweile sorgen sich auch Experten, dass ausgerechnet diese verschreibungsfreien Wundercocktails zur Stärkung von Intelligenz, Immunsystem oder Libido von den Importbeschränkungen ausgenommen sind. Dabei enthalten die Pillen und Ampullen, die in Supermärkten verkauft werden, exotische Mixturen aus Rinderaugen; dazu Extrakte von Hypophyse oder Kälberföten, Prostata, Lymphknoten und gefriergetrocknetem Schweinemagen. In die USA hereingelassen werden auch Blut, Fett, Gelatine und Samen. Diese Stoffe tauchen noch immer in US-Produkten auf, inklusive Medizin und Kosmetika. Selbst in Impfstoffen waren möglicherweise gefährliche Rinderprodukte enthalten. Zwar fordert die FDA schon seit acht Jahren die US-Pharmaindustrie auf, keine Stoffe aus Ländern zu benutzen, in denen die Gefahr einer BSE-Infizierung besteht. Aber erst kürzlich verpflichteten sich fünf Unternehmen, darunter Branchenführer wie GlaxoSmithKline, Aventis und American Home Products, ihre Seren nur noch aus unverdächtigem Material herzustellen.

"Its as full of holes as Swiss Cheese" says Terry Singeltary of the FDA regulations. ...

Tuesday, June 1, 2010

USA cases of dpCJD rising with 24 cases so far in 2010

Sunday, July 11, 2010

CJD or prion disease 2 CASES McLennan County Texas population 230,213 both cases in their 40s

Friday, February 05, 2010

New Variant Creutzfelt Jakob Disease case reports United States 2010 A Review

Manuscript Draft Manuscript Number: Title: HUMAN and ANIMAL TSE Classifications i.e. mad cow disease and the UKBSEnvCJD only theory Article Type: Personal View Corresponding Author: Mr. Terry S. Singeltary, Corresponding Author's Institution: na First Author: Terry S Singeltary, none Order of Authors: Terry S Singeltary, none; Terry S. Singeltary

Abstract: TSEs have been rampant in the USA for decades in many species, and they all have been rendered and fed back to animals for human/animal consumption. I propose that the current diagnostic criteria for human TSEs only enhances and helps the spreading of human TSE from the continued belief of the UKBSEnvCJD only theory in 2007.

Saturday, June 13, 2009

Monitoring the occurrence of emerging forms of Creutzfeldt-Jakob disease in the United States 2003 revisited 2009

Saturday, January 2, 2010

Human Prion Diseases in the United States January 1, 2010 ***FINAL***

my comments to PLosone here ;

HOW many of you recieved a written CJD Questionnaire asking real questions pertaining to route and source (and there are many here in North America) ?

IS every case getting a cjd questionnaire asking real questions ???

Friday, November 30, 2007


Terry S. Singeltary Sr. P.O. Box 42 Bacliff, Texas USA 77518

Labels: , , , ,


Post a Comment

Subscribe to Post Comments [Atom]

<< Home