Thursday, June 21, 2012

Clinical and Pathologic Features of H-Type Bovine Spongiform Encephalopathy Associated with E211K Prion Protein Polymorphism

Clinical and Pathologic Features of H-Type Bovine Spongiform Encephalopathy Associated with E211K Prion Protein Polymorphism


Justin J. Greenlee1*, Jodi D. Smith1, M. Heather West Greenlee2, Eric M. Nicholson1


1 National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, Iowa, United States of America, 2 Iowa State University, Ames, Iowa, United States of America


Abstract


The majority of bovine spongiform encephalopathy (BSE) cases have been ascribed to the classical form of the disease. Htype and L-type BSE cases have atypical molecular profiles compared to classical BSE and are thought to arise spontaneously. However, one case of H-type BSE was associated with a heritable E211K mutation in the prion protein gene. The purpose of this study was to describe transmission of this unique isolate of H-type BSE when inoculated into a calf of the same genotype by the intracranial route. Electroretinograms were used to demonstrate preclinical deficits in retinal function, and optical coherence tomography was used to demonstrate an antemortem decrease in retinal thickness. The calf rapidly progressed to clinical disease (9.4 months) and was necropsied. Widespread distribution of abnormal prion protein was demonstrated within neural tissues by western blot and immunohistochemistry. While this isolate is categorized as BSE-H due to a higher molecular mass of the unglycosylated PrPSc isoform, a strong labeling of all 3 PrPSc bands with monoclonal antibodies 6H4 and P4, and a second unglycosylated band at approximately 14 kDa when developed with antibodies that bind in the C-terminal region, it is unique from other described cases of BSE-H because of an additional band 23 kDa demonstrated on western blots of the cerebellum. This work demonstrates that this isolate is transmissible, has a BSE-H phenotype when transmitted to cattle with the K211 polymorphism, and has molecular features that distinguish it from other cases of BSE-H described in the literature.


snip...


Results and Discussion


Clinical Findings


A calf with the K211 allele was intracranially inoculated with Htype BSE from the US 2006 BSE case that also had one K211 allele. This calf demonstrated clinical signs at approximately 9.4 months (288 days) post-inoculation (PI). Initial signs were nondescript: listlessness, head down in non-physiologic position with drooping ears, and decreased feed consumption. Within a week, clinical signs had progressed to the calf separating himself from others in the pen, head pressing into the wall or gate, and intermittent reluctance to rise with a stumbling gate for a brief time after rising. The calf began to demonstrate a lip licking and accentuated chewing behavior that was not associated with feeding. The lip-licking and chewing behaviors increased in frequency and severity, and at the time of necropsy at approximately 9.8 months PI (301 days), the calf was depressed, salivating excessively, and reluctant to rise.


Progression to severe clinical signs of BSE occurred in this animal after 9.8 months, a faster onset than the 12–18 months described for other experimental cases of H-type BSE [28,29,30,31]. Previous studies describe the onset of clinical signs for BSE-H as early as 8 months PI [31], but more commonly at 12 months PI [30] or later [28] with a 2–7 month progression of disease to ataxia and inability to rise [28,30,31]. Our findings are similar to other reports in that the earliest clinical signs appear to be vague: weight loss, depression, and low head carriage. However, reports of clinical findings in BSE-H are variable: from ataxia and myoclonus that progresses to an inability to rise without nervousness or aggression [30] to a nervous disease form that is characterized by overeactivity to external stimuli, apprehension and anxiety [31]. This case of E211K BSE-H is different in that the most obvious outward clinical signs were bizarre licking and chewing behaviors not described elsewhere. While the calf affected with E211K was reluctant to rise, it was able to rise when encouraged, however, this animal was younger and smaller than cattle in other studies that had difficulty getting to their feet, which may play a role in the difference reported.


snip...


Distribution and Characterization of Lesions in BSE-H


Vacuolar lesions typical of spongiform encephalopathy were present throughout the brain of this calf. Spongiform change was most severe in the piriform cortex and hippocampus, but present at all levels of brain examined. The distribution of lesions suggests sampling at various levels of the brain, including the obex, would be fruitful for diagnosis. Vacuolation scores ranged from 1 to 3 (scale of 0 to 4), but the vast majority of regions were scored a 2 or higher, indicating definitive spongiform lesions (Fig. S1). Lesions predominantly affected gray matter with little to no involvement of white matter. Vacuoles were primarily present in the neuropil, but were also detected within the cytoplasm of neurons (Fig. 3). At all levels of the spinal cord, there were few inconclusive vacuoles present in the neuropil of the dorsal horns.


Results of microscopic examination for vacuolar change indicate that additional tools may be required to differentiate E211K BSE from classical BSE or other isolates of BSE-H that have been described in the literature [30,31]. Similar to other reports, vacuolar change was generally observed in all brain areas and moderate to severe vacuolar change was detected in cerebral cortex, cerebellum, basal ganglia, thalamus, and brainstem [30,31]. However, there were contrasts in the areas with the highest vacuolation scores. The highest levels of spongiform change were evident in piriform cortex and hippocampus in this case, whereas the highest levels were in thalamic nuclei and midbrain of other reports [30]. Profiles developed using larger numbers of animals suggest that BSE-H may be difficult to distinguish from classical BSE based on spongiform change in the obex, but may have increased numbers of vacuoles in rostral brain areas [31]. E211K BSE-H had the lowest scores in pontine and hypoglossal motor nuclei, which was similar to previous reports of BSE-H [30]. In summary, it appears that vacuolar change is variable amongst different isolates classified as BSE-H. Caution should be used when considering the lesion profile of this single animal as what role individual animal differences or the E211K polymorphism play cannot be determined without further experimentation.


Microscopic evaluation of the brain of the US 2006 H-type BSE case was limited to the obex and complicated by freeze artifact, precluding a definitive microscopic interpretation [18]. Therefore, this is the first description of the microscopic lesions in the CNS of a bovid affected with H-type BSE associated with the E211K polymorphism. No amyloid plaques were present in the tissues from the calf with E211K BSE-H, which is similar to one previous study of BSE-H [31], but contrasts with another [30].


Immunohistochemical analysis for PrPSc demonstrated widespread immunoreactivity throughout the brain, spinal cord, and retina with lesser immunoreactivity in neurohypophysis and the trigeminal ganglia (Fig. S2). Regardless of the brain region examined, PrPSc immunoreactivity was readily apparent. Immunoreactivity was most intense in the brainstem and midbrain and patterns of immunoreactivity were similar to those previously described [1,18,26,30,31]with an intraglial distribution predominating. The predominant patterns in the cortex were intraglial and stellate on a background of fine punctate and granular particulate staining that was multifocally coalescing (Fig. 4A). Perineuronal staining was also evident, but intraneuronal immunoreactivity was rare. Immunoreactivity increased in intensity from frontal cortex caudal to occipital cortex. In the white matter subjacent to the cortex, there were rare coarse particulate foci of immunoreactivity that were most often associated with glial cell margins (Fig. S3). This is in contrast to previous studies where glial staining in the white matter was a more prominent feature in BSE-H [31]. We did not see PrPSc immunoreactive plaques in the gray or white matter, but other reports indicate that this occurs as a prominent [30] or lesser [31] feature. Immunoreactivity in hippocampus, midbrain, and brainstem was markedly intense and frequently formed coalescing aggregates (Fig. 4B). While intraneuronal straining was rare in the cortex, it became the most obvious pattern in the midbrain and brainstem nuclei (Fig. 4D) with notable exception of the parasympathetic nucleus of the vagus nerve. Intraneuronal staining also was readily apparent in spinal cord (Fig. S2). Immunoreactivity was scant in the cerebellum where small, multifocal clumps of granular and particulate staining occurred in the molecular and granular layers. The cerebellar white matter was devoid of immunoreactivity except for in association with deep cerebellar nuclei (Fig. S4), which is in contrast to other studies of BSE-H where the most prominent staining of the cerebellum was in the white matter [31]. Considering the strong immunoreactivity in other regions of the brain, the scant immunoreactivity in cerebellum was surprising. This finding corroborates recent studies examining PrPSc immunoreactivity in the brainstem and cerebellum of cases of BSE-H where the cerebellum and caudal brainstem contained less PrPSc than more rostral regions of the brainstem [31,38]The immunohistochemical techniques used here failed to demonstrate PrPSc in other tissues examined. This finding is consisent with other studies of atypical BSE that suggest that no significant PrPSc depositions occur in peripheral tissues [39]. Other findings of the lesions described contrast those described for wild-type cattle with BSE-H [30] in that no PrPSc plaques were noted and that there is less immunoreactivity in the cerebellum in this case. Whether the E211K polymorphism influences lesion character or distribution when inoculated with other BSE isolates will require further study.


snip...


The disease reported here was true to the molecular characterization of the case diagnosed in 2006, which is the best approximation of H-type BSE that may occur later in life in cattle with the E211K polymorphism. Based on the case history of the original 2006 E211K BSE case and the fact that the vast majority of naturally-occurring atypical BSE cases involve older cattle (.10 yrs of age), we speculate that a pre-clinical period of at least 10 years will be required for BSE-H to naturally occur in E211K cattle without prior exposure to infectious material. While an inoculation study cannot definitely prove that the U.S. 2006 BSEH case was due to the E211K polymorphism, i.e. an inherited TSE, the results of this study do suggest that cattle with the K211 allele are predisposed to rapid onset of BSE-H when exposed.


Most significantly it must be determined if the molecular phenotype of this cattle TSE remains stable when transmitted to cattle without the E211K polymorphism as several other isolates of atypical BSE have been shown to adopt a molecular profile consistent with classical BSE after passage in transgenic mice expressing bovine PrPC [40] or multiple passages in wild type mice [23]. Results of ongoing studies, namely passage of the E211K Htype isolate into wild-type cattle, will lend further insight into what role, if any, genetic and sporadic forms of BSE may have played in the origins of classical BSE. Atypical cases presumably of spontaneous or, in the case of E211K BSE-H, genetic origins highlight that it may not be possible to eradicate BSE entirely and that it would be hazardous to remove disease control measures such as prohibiting the feeding of meat and bone meal to ruminants.


snip...


Citation: Greenlee JJ, Smith JD, West Greenlee MH, Nicholson EM (2012) Clinical and Pathologic Features of H-Type Bovine Spongiform Encephalopathy Associated with E211K Prion Protein Polymorphism. PLoS ONE 7(6): e38678. doi:10.1371/journal.pone.0038678


Editor: Corinne Ida Lasmezas, The Scripps Research Institute Scripps Florida, United States of America


Received January 6, 2012; Accepted May 11, 2012; Published June 8, 2012


This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.


Funding: This research was funded in its entirety by congressionally appropriated funds to the United States Department of Agriculture, Agriculture Research Service. The funders of the work did not influence study design, data collection and analysis, decision to publish, and preparation of the manuscript.


Competing Interests: The authors have declared that no competing interests exist. * E-mail: justin.greenlee@ars.usda.gov






see full text ;







thanks again PLOS for open access for the layperson...tss

 
 
 
 
 
2011 Annual Report
 
 
 
 
1a.Objectives (from AD-416) The objective of this cooperative research project is to investigate the influence of the bovine Prnp gene polymorphisms, E211K, on the susceptibility to BSE. Specifically, the research project will provide 134 embryos that will be used to generate approximately 62 animals, 31 of which will contain the rare allele for the purposes BSE research. This ongoing SCA with Iowa State University to produce cattle with the E211K Prnp allele for BSE research has resulted in an E211/K211 heterozygous bull. We are now in the unique position to extend our research on this allele to include animals homozygous for K at position 211. Based upon our understanding of this novel polymorphism one would predict homozygotes would have a more rapid onset of clinical signs associated with genetic BSE than heterozygotes.
 
 
 
 
1b.Approach (from AD-416) To achieve the research goals it is imperative to increase the number of animals available to study this Prnp polymorphism. One female calf of the 2006 BSE case was identified and carries the E211K allele. The specific objectives are to be accomplished through the production of multiple offspring from this E211K heifer through superovulation and embryo transfer. Approximately 50% of the offspring will be heterozygous for the E211K polymorphism while the others will serve as genetically matched non-E211K controls. Collection of semen from an E211K heterozygous bull will allow creation of E211K homozygotes. To protect this unique resource immediate collection of embryos is necessary. The initial goal is to harvest 134 embryos that should result in approximately 62 pregnancies (half of which will carry the E211K polymorphism) for immediate use in the studies to amplify the E211K material, test for genetic susceptibility to TSE, and develop a breeding group to produce calves for transmissibility studies. To achieve the goal of understanding the role of the E211K polymorphism with regard to genetic BSE we have utilized superovulation and embryo transfer obtaining a E211/K211 containing bull. We are now in a position to collect semen from the E211/K211 heterozygous bull to create K211/K211 homozygotes. To accomplish this goal we plan to collect semen from this bull and through artificial insemination using semen from the E211/K211 bull with superovulation and embryo transplantation using other E211/K211 heterzygotes generate 30-40 embryos resulting in 15-20 pregnancies yielding approximately 5 K211/K211 homozygous animals and 10 E211/K211 heterozyous animals as well as 5 E211/E211 homozygous controls.
 
 
 
 
 3.Progress Report
 
 
 
 
 
The objective of this cooperative research is to protect the unique resource afforded us in the form of the only known cow possessing the 211K PRNP allele and to produce offspring containing this allele for research purposes. To date, 18 pregnancies have resulted from the harvested embryos. From these, 13 live calves have been delivered, 8 of which contain the 211K PRNP allele and an additional 8 calves are due in FY2012. One of the 8 211K-containing animals produced to date is a bull from which semen has been collected and embryos are now being produced from sibling matings that may provide 211K homozygous animals. As a derivative of this work we have been able to define the upstream regulatory elements associated with the 211K PRNP allele. Communication with the collaborator has been through a combination of email and face-to-face communication.
 
 
 
 
 
 
 
 
 
 
PO-183: Association of dna polymorphisms within the regulatory regions of the bovine PRNP gene with atypical BSE
 
 
 
 
Simone Peletto,1 Maria Grazia Maniaci,1 Miroslaw Pawel Polak,2 Jan Langeveld,3 Stefanie Czub,4 Alex Bossers,3 Wilfred Goldmann,5 Pier Luigi Acutis1 1Istituto Zooprofilattico Sperimentale del Piemonte; Liguria e Valle d’Aosta; Turin, Italy; 2National Veterinary Research Institute; Pulawy, Poland; 3Central Veterinary Institute of Wageningen UR (CVI ); Lelystad, The Netherlands; 4Canadian and OIE Reference Laboratories for BSE; Canadian Food Inspection Agency; Alberta, AB Canada; 5The Roslin Institute & Royal (Dick) School of Veterinary Studies; Edinburgh, UK
Background. Atypical bovine spongiform encephalopathy (atypical BSE) is a recently recognized form of prion disease in cattle. Atypical BSE cases are rare but have been identified worldwide. They have been classified as so-called H-type and L-type on the basis of the prion protein’s immunobiochemical signature. The etiology of atypical BSE is unclear, however, its epidemiology suggests that, unlike classical BSE, it may have originated spontaneously as a sporadic disease. In 2006, an atypical BSE case was found in the United States, carrying a PRNP mutation (E211K) homologous to the human E200K polymorphism, a risk factor for genetic CJD. To date, the K211 allele has not been detected in other atypical BSE cases or healthy cattle.
 
 
 
 
Objectives. In this study, the analysis of regulatory regions outside the open reading frame of the PRNP gene was performed on a panel of atypical BSE cases and negative controls with the aim to identify potential genetic determinants of susceptibility. Methods. DNA samples were obtained from 20 cases confirmed as atypical H-type (n = 4) or L-type (n = 16) BSE by Western Blot profile. They originated from Italy, Poland, the Netherlands and Canada. The control group comprised 108 BSE negative cattle which were frequency matched to cases by breed. A 5.2 Kb region of high linkage disequilibrium (LD) was selected from the promoter through exon 2 of the PRNP gene. Association analysis was performed comparing allele/genotype/ haplotype frequencies between cases and controls by computing Fisher exact test. H-type and L-type BSE cases were analyzed both as one group and separately.
 
 
 
 
Results. Sequence analysis revealed 46 single nucleotide polymorphisms (SNPs), three multiple nucleotide and five insertion/ deletion (indel) polymorphisms. Two SNP variants, being in complete LD and located upstream the transcription start site (47238-C and 47450-C; ref. seq. AJ298878), were associated with susceptibility to atypical BSE in both allele and genotype distributions (p = 0.0004 and p = 0.0005, respectively). In intron I, the 12-bp deletion allele and one SNP (50743-G) resulted to be significantly more frequent in the atypical BSE cases (p = 0.0002). Finally, one haplotype was found to be underrepresented in the BSE group compared with controls (p = 0.0002), with the exception of the Italian animals.
 
 
 
 
Discussion. This is the first genetic association study on atypical BSE involving a relatively high number of cases from four different countries. The results suggest that polymorphism in the non-coding region of PRNP may play a role in susceptibility of cattle to atypical BSE. The association of the 12-bp deletion allele is in contrast to previously reported findings (Brunelle et al., 2007), mostly involving H-type cases. This may either be the result of the larger number of animals included in our study or reflect differences in the role of genetics in the two distinct BSE phenotypes. One haplotype was found to be less frequent in the BSE group, but this association was not confirmed for the Italian L-type (BASE) cases, suggesting a complex scenario in which probably several factors interact to determinate the disease outcome.
 
 
 
 
 
 



Neurobiology of Disease


A New Mechanism for Transmissible Prion Diseases


Natallia Makarava1, Gabor G. Kovacs2, Regina Savtchenko1, Irina Alexeeva3, Valeriy G. Ostapchenko1, Herbert Budka2, Robert G. Rohwer3, and Ilia V. Baskakov1,4 + Author Affiliations


1Center for Biomedical Engineering and Technology, University of Maryland, Baltimore, Maryland 21201, 2Institute of Neurology, Medical University of Vienna, A-1097 Vienna, Austria, 3Medical Research Service, Veterans Affairs Medical Center, University of Maryland, Baltimore, Maryland 21201, and 4Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201 + Author Notes


V. G. Ostapchenko's present address J. Allyn Taylor Centre for Cell Biology, Molecular Brain Research Group, Robarts Research Institute, and Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5KB, Canada.


Author contributions: N.M. and I.V.B. designed research; N.M., G.G.K., R.S., I.A., V.G.O., and R.G.R. performed research; N.M., G.G.K., H.B., and I.V.B. analyzed data; N.M., G.G.K., and I.V.B. wrote the paper.


Abstract


The transmissible agent of prion disease consists of prion protein (PrP) in β-sheet-rich state (PrPSc) that can replicate its conformation according to a template-assisted mechanism. This mechanism postulates that the folding pattern of a newly recruited polypeptide accurately reproduces that of the PrPSc template. Here, three conformationally distinct amyloid states were prepared in vitro using Syrian hamster recombinant PrP (rPrP) in the absence of cellular cofactors. Surprisingly, no signs of prion infection were found in Syrian hamsters inoculated with rPrP fibrils that resembled PrPSc, whereas an alternative amyloid state, with a folding pattern different from that of PrPSc, induced a pathogenic process that led to transmissible prion disease. An atypical proteinase K-resistant, transmissible PrP form that resembled the structure of the amyloid seeds was observed during a clinically silent stage before authentic PrPSc emerged. The dynamics between the two forms suggest that atypical proteinase K-resistant PrP (PrPres) gave rise to PrPSc. While no PrPSc was found in preparations of fibrils using protein misfolding cyclic amplification with beads (PMCAb), rPrP fibrils gave rise to atypical PrPres in modified PMCAb, suggesting that atypical PrPres was the first product of PrPC misfolding triggered by fibrils. The current work demonstrates that a new mechanism responsible for prion diseases different from the PrPSc-templated or spontaneous conversion of PrPC into PrPSc exists. This study provides compelling evidence that noninfectious amyloids with a structure different from that of PrPSc could lead to transmissible prion disease. This work has numerous implications for understanding the etiology of prion and other neurodegenerative diseases.


snip...



=======================================



The atypical PrPres described here was very similar to the atypical PrPres found in patients with sporadic Creutzfeldt-Jakob disease (Zou et al., 2003), atypical bovine spongiform encephalopathy (H-BSE), which is believed to be sporadic in origin (Biacabe et al., 2007), or ovine scrapie (Baron et al., 2008). This current study suggests that atypical PrPres can replicate in animal brains and that its replication does not require PrPSc assistance; therefore, it represents one of the transmissible PrP states.



======================================



Received December 20, 2011. Revision received March 20, 2012. Accepted April 3, 2012.








Thursday, May 24, 2012


A New Mechanism for Transmissible Prion Diseases







From: Terry S. Singeltary Sr.


Sent: Friday, May 11, 2012 9:31 PM


To: BSE-L@LISTS.AEGEE.ORG


Subject: [BSE-L] Experimental H-type bovine spongiform encephalopathy characterized by plaques and glial- and stellate-type prion protein deposits


Experimental H-type bovine spongiform encephalopathy characterized by plaques and glial- and stellate-type prion protein deposits


Hiroyuki Okada1*, Yoshifumi Iwamaru1, Morikazu Imamura1, Kentaro Masujin1, Yuichi Matsuura1, Yoshihisa Shimizu1 , Kazuo Kasai1, Shirou Mohri1, Takashi Yokoyama1 and Stefanie Czub2


Abstract


Atypical bovine spongiform encephalopathy (BSE) has recently been identified in Europe, North America, and Japan. It is classified as H-type and L-type BSE according to the molecular mass of the disease-associated prion protein (PrPSc). To investigate the topographical distribution and deposition patterns of immunolabeled PrPSc, Htype BSE isolate was inoculated intracerebrally into cattle. H-type BSE was successfully transmitted to 3 calves, with incubation periods between 500 and 600 days. Moderate to severe spongiform changes were detected in the cerebral and cerebellar cortices, basal ganglia, thalamus, and brainstem. H-type BSE was characterized by the presence of PrP-immunopositive amyloid plaques in the white matter of the cerebrum, basal ganglia, and thalamus. Moreover, intraglial-type immunolabeled PrPSc was prominent throughout the brain. Stellate-type immunolabeled PrPSc was conspicuous in the gray matter of the cerebral cortex, basal ganglia, and thalamus, but not in the brainstem. In addition, PrPSc accumulation was detected in the peripheral nervous tissues, such as trigeminal ganglia, dorsal root ganglia, optic nerve, retina, and neurohypophysis. Cattle are susceptible to H-type BSE with a shorter incubation period, showing distinct and distinguishable phenotypes of PrPSc accumulation.


snip...


The present study demonstrated successful intraspecies transmission of H-type BSE to cattle and the distribution and immunolabeling patterns of PrPSc in the brain of the H-type BSE-challenged cattle. TSE agent virulence can be minimally defined by oral transmission of different TSE agents (C-type, L-type, and H-type BSE agents) [59]. Oral transmission studies with H-type BSEinfected cattle have been initiated and are underway to provide information regarding the extent of similarity in the immunohistochemical and molecular features before and after transmission.


In addition, the present data will support risk assessments in some peripheral tissues derived from cattle affected with H-type BSE.







Friday, March 09, 2012


Experimental H-type and L-type bovine spongiform encephalopathy in cattle: observation of two clinical syndromes and diagnostic challenges


Research article






Thursday, June 23, 2011


Experimental H-type bovine spongiform encephalopathy characterized by plaques and glial- and stellate-type prion protein deposits






P.4.23


Transmission of atypical BSE in humanized mouse models


Liuting Qing1, Wenquan Zou1, Cristina Casalone2, Martin Groschup3, Miroslaw Polak4, Maria Caramelli2, Pierluigi Gambetti1, Juergen Richt5, Qingzhong Kong1 1Case Western Reserve University, USA; 2Instituto Zooprofilattico Sperimentale, Italy; 3Friedrich-Loeffler-Institut, Germany; 4National Veterinary Research Institute, Poland; 5Kansas State University (Previously at USDA National Animal Disease Center), USA


Background: Classical BSE is a world-wide prion disease in cattle, and the classical BSE strain (BSE-C) has led to over 200 cases of clinical human infection (variant CJD). Atypical BSE cases have been discovered in three continents since 2004; they include the L-type (also named BASE), the H-type, and the first reported case of naturally occurring BSE with mutated bovine PRNP (termed BSE-M). The public health risks posed by atypical BSE were largely undefined.


Objectives: To investigate these atypical BSE types in terms of their transmissibility and phenotypes in humanized mice. Methods: Transgenic mice expressing human PrP were inoculated with several classical (C-type) and atypical (L-, H-, or Mtype) BSE isolates, and the transmission rate, incubation time, characteristics and distribution of PrPSc, symptoms, and histopathology were or will be examined and compared.


Results: Sixty percent of BASE-inoculated humanized mice became infected with minimal spongiosis and an average incubation time of 20-22 months, whereas only one of the C-type BSE-inoculated mice developed prion disease after more than 2 years. Protease-resistant PrPSc in BASE-infected humanized Tg mouse brains was biochemically different from bovine BASE or sCJD. PrPSc was also detected in the spleen of 22% of BASE-infected humanized mice, but not in those infected with sCJD. Secondary transmission of BASE in the humanized mice led to a small reduction in incubation time.*** The atypical BSE-H strain is also transmissible with distinct phenotypes in the humanized mice, but no BSE-M transmission has been observed so far.


Discussion: Our results demonstrate that BASE is more virulent than classical BSE, has a lymphotropic phenotype, and displays a modest transmission barrier in our humanized mice. BSE-H is also transmissible in our humanized Tg mice. The possibility of more than two atypical BSE strains will be discussed.


Supported by NINDS NS052319, NIA AG14359, and NIH AI 77774.







P26 TRANSMISSION OF ATYPICAL BOVINE SPONGIFORM ENCEPHALOPATHY (BSE) IN HUMANIZED MOUSE MODELS


Liuting Qing1, Fusong Chen1, Michael Payne1, Wenquan Zou1, Cristina Casalone2, Martin Groschup3, Miroslaw Polak4, Maria Caramelli2, Pierluigi Gambetti1, Juergen Richt5*, and Qingzhong Kong1 1Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA; 2CEA, Istituto Zooprofilattico Sperimentale, Italy; 3Friedrich-Loeffler-Institut, Germany; 4National Veterinary Research Institute, Poland; 5Kansas State University, Diagnostic Medicine/Pathobiology Department, Manhattan, KS 66506, USA. *Previous address: USDA National Animal Disease Center, Ames, IA 50010, USA


Classical BSE is a world-wide prion disease in cattle, and the classical BSE strain (BSE-C) has led to over 200 cases of clinical human infection (variant CJD). Two atypical BSE strains, BSE-L (also named BASE) and BSE-H, have been discovered in three continents since 2004. The first case of naturally occurring BSE with mutated bovine PrP gene (termed BSE-M) was also found in 2006 in the USA. The transmissibility and phenotypes of these atypical BSE strains/isolates in humans were unknown. We have inoculated humanized transgenic mice with classical and atypical BSE strains (BSE-C, BSE-L, BSE-H) and the BSE-M isolate. We have found that the atypical BSE-L strain is much more virulent than the classical BSE-C.*** The atypical BSE-H strain is also transmissible in the humanized transgenic mice with distinct phenotype, but no transmission has been observed for the BSE-M isolate so far.


III International Symposium on THE NEW PRION BIOLOGY: BASIC SCIENCE, DIAGNOSIS AND THERAPY 2 - 4 APRIL 2009, VENEZIA (ITALY)










I ask Professor Kong ;


Thursday, December 04, 2008 3:37 PM Subject: RE: re--Chronic Wating Disease (CWD) and Bovine Spongiform Encephalopathies (BSE): Public Health Risk Assessment


''IS the h-BSE more virulent than typical BSE as well, or the same as cBSE, or less virulent than cBSE? just curious.....''


Professor Kong reply ;


.....snip


''As to the H-BSE, we do not have sufficient data to say one way or another, but we have found that H-BSE can infect humans. I hope we could publish these data once the study is complete. Thanks for your interest.''


Best regards, Qingzhong Kong, PhD Associate Professor Department of Pathology Case Western Reserve University Cleveland, OH 44106 USA


END...TSS


Thursday, December 04, 2008 2:37 PM


"we have found that H-BSE can infect humans."


personal communication with Professor Kong. ...TSS


BSE-H is also transmissible in our humanized Tg mice.


The possibility of more than two atypical BSE strains will be discussed.


Supported by NINDS NS052319, NIA AG14359, and NIH AI 77774.










let's take a closer look at this new prionpathy or prionopathy, and then let's look at the g-h-BSEalabama mad cow.


This new prionopathy in humans? the genetic makeup is IDENTICAL to the g-h-BSEalabama mad cow, the only _documented_ mad cow in the world to date like this, ......wait, it get's better. this new prionpathy is killing young and old humans, with LONG DURATION from onset of symptoms to death, and the symptoms are very similar to nvCJD victims, OH, and the plaques are very similar in some cases too, bbbut, it's not related to the g-h-BSEalabama cow, WAIT NOW, it gets even better, the new human prionpathy that they claim is a genetic TSE, has no relation to any gene mutation in that family. daaa, ya think it could be related to that mad cow with the same genetic make-up ??? there were literally tons and tons of banned mad cow protein in Alabama in commerce, and none of it transmitted to cows, and the cows to humans there from ??? r i g h t $$$


ALABAMA MAD COW g-h-BSEalabama


In this study, we identified a novel mutation in the bovine prion protein gene (Prnp), called E211K, of a confirmed BSE positive cow from Alabama, United States of America. This mutation is identical to the E200K pathogenic mutation found in humans with a genetic form of CJD. This finding represents the first report of a confirmed case of BSE with a potential pathogenic mutation within the bovine Prnp gene. We hypothesize that the bovine Prnp E211K mutation most likely has caused BSE in "the approximately 10-year-old cow" carrying the E221K mutation.










her healthy calf also carried the mutation (J. A. Richt and S. M. Hall PLoS Pathog. 4, e1000156; 2008).


This raises the possibility that the disease could occasionally be genetic in origin. Indeed, the report of the UK BSE Inquiry in 2000 suggested that the UK epidemic had most likely originated from such a mutation and argued against the scrapierelated assumption. Such rare potential pathogenic PRNP mutations could occur in countries at present considered to be free of BSE, such as Australia and New Zealand. So it is important to maintain strict surveillance for BSE in cattle, with rigorous enforcement of the ruminant feed ban (many countries still feed ruminant proteins to pigs). Removal of specified risk material, such as brain and spinal cord, from cattle at slaughter prevents infected material from entering the human food chain. Routine genetic screening of cattle for PRNP mutations, which is now available, could provide additional data on the risk to the public. Because the point mutation identified in the Alabama animals is identical to that responsible for the commonest type of familial (genetic) CJD in humans, it is possible that the resulting infective prion protein might cross the bovine–human species barrier more easily. Patients with vCJD continue to be identified. The fact that this is happening less often should not lead to relaxation of the controls necessary to prevent future outbreaks.


Malcolm A. Ferguson-Smith Cambridge University Department of Veterinary Medicine, Madingley Road, Cambridge CB3 0ES, UK e-mail: maf12@cam.ac.uk Jürgen A. Richt College of Veterinary Medicine, Kansas State University, K224B Mosier Hall, Manhattan, Kansas 66506-5601, USA


NATURE|Vol 457|26 February 2009






Saturday, August 14, 2010


BSE Case Associated with Prion Protein Gene Mutation (g-h-BSEalabama) and VPSPr PRIONPATHY


(see mad cow feed in COMMERCE IN ALABAMA...TSS)






P.9.21


Molecular characterization of BSE in Canada


Jianmin Yang1, Sandor Dudas2, Catherine Graham2, Markus Czub3, Tim McAllister1, Stefanie Czub1 1Agriculture and Agri-Food Canada Research Centre, Canada; 2National and OIE BSE Reference Laboratory, Canada; 3University of Calgary, Canada


Background: Three BSE types (classical and two atypical) have been identified on the basis of molecular characteristics of the misfolded protein associated with the disease. To date, each of these three types have been detected in Canadian cattle.


Objectives: This study was conducted to further characterize the 16 Canadian BSE cases based on the biochemical properties of there associated PrPres. Methods: Immuno-reactivity, molecular weight, glycoform profiles and relative proteinase K sensitivity of the PrPres from each of the 16 confirmed Canadian BSE cases was determined using modified Western blot analysis.


Results: Fourteen of the 16 Canadian BSE cases were C type, 1 was H type and 1 was L type. The Canadian H and L-type BSE cases exhibited size shifts and changes in glycosylation similar to other atypical BSE cases. PK digestion under mild and stringent conditions revealed a reduced protease resistance of the atypical cases compared to the C-type cases. N terminal- specific antibodies bound to PrPres from H type but not from C or L type. The C-terminal-specific antibodies resulted in a shift in the glycoform profile and detected a fourth band in the Canadian H-type BSE.


Discussion: The C, L and H type BSE cases in Canada exhibit molecular characteristics similar to those described for classical and atypical BSE cases from Europe and Japan. This supports the theory that the importation of BSE contaminated feedstuff is the source of C-type BSE in Canada.


*** It also suggests a similar cause or source for atypical BSE in these countries.






what about that ALABAMA MAD COW, AND MAD COW FEED THERE FROM IN THAT STATE ???




Saturday, August 14, 2010


BSE Case Associated with Prion Protein Gene Mutation (g-h-BSEalabama) and VPSPr PRIONPATHY


*** (see mad cow feed in COMMERCE IN ALABAMA...TSS)


BANNED MAD COW FEED IN COMMERCE IN ALABAMA


Date: September 6, 2006 at 7:58 am PST PRODUCT


a) EVSRC Custom dairy feed, Recall # V-130-6;


b) Performance Chick Starter, Recall # V-131-6;


c) Performance Quail Grower, Recall # V-132-6;


d) Performance Pheasant Finisher, Recall # V-133-6.


CODE None RECALLING FIRM/MANUFACTURER Donaldson & Hasenbein/dba J&R Feed Service, Inc., Cullman, AL, by telephone on June 23, 2006 and by letter dated July 19, 2006. Firm initiated recall is complete.


REASON


Dairy and poultry feeds were possibly contaminated with ruminant based protein.


VOLUME OF PRODUCT IN COMMERCE 477.72 tons


DISTRIBUTION AL


______________________________






PRODUCT Bulk custom dairy pre-mixes,


Recall # V-120-6 CODE None RECALLING FIRM/MANUFACTURER Ware Milling Inc., Houston, MS, by telephone on June 23, 2006. Firm initiated recall is complete. REASON Possible contamination of dairy animal feeds with ruminant derived meat and bone meal.


VOLUME OF PRODUCT IN COMMERCE 350 tons


DISTRIBUTION AL and MS


______________________________


PRODUCT


a) Tucker Milling, LLC Tm 32% Sinking Fish Grower, #2680-Pellet, 50 lb. bags, Recall # V-121-6;


b) Tucker Milling, LLC #31120, Game Bird Breeder Pellet, 50 lb. bags, Recall # V-122-6;


c) Tucker Milling, LLC #31232 Game Bird Grower, 50 lb. bags, Recall # V-123-6;


d) Tucker Milling, LLC 31227-Crumble, Game Bird Starter, BMD Medicated, 50 lb bags, Recall # V-124-6;


e) Tucker Milling, LLC #31120, Game Bird Breeder, 50 lb bags, Recall # V-125-6;


f) Tucker Milling, LLC #30230, 30 % Turkey Starter, 50 lb bags, Recall # V-126-6;


g) Tucker Milling, LLC #30116, TM Broiler Finisher, 50 lb bags, Recall # V-127-6


CODE All products manufactured from 02/01/2005 until 06/20/2006 RECALLING FIRM/MANUFACTURER Recalling Firm: Tucker Milling LLC, Guntersville, AL, by telephone and visit on June 20, 2006, and by letter on June 23, 2006. Manufacturer: H. J. Baker and Brothers Inc., Stamford, CT. Firm initiated recall is ongoing.


REASON Poultry and fish feeds which were possibly contaminated with ruminant based protein were not labeled as "Do not feed to ruminants".


VOLUME OF PRODUCT IN COMMERCE 7,541-50 lb bags


DISTRIBUTION AL, GA, MS, and TN


END OF ENFORCEMENT REPORT FOR AUGUST 9, 2006


###





Subject: MAD COW FEED RECALL AL AND FL VOLUME OF PRODUCT IN COMMERCE 125 TONS Products manufactured from 02/01/2005 until 06/06/2006


Date: August 6, 2006 at 6:16 pm PST PRODUCT


a) CO-OP 32% Sinking Catfish, Recall # V-100-6;


b) Performance Sheep Pell W/Decox/A/N, medicated, net wt. 50 lbs, Recall # V-101-6;


c) Pro 40% Swine Conc Meal -- 50 lb, Recall # V-102-6;


d) CO-OP 32% Sinking Catfish Food Medicated, Recall # V-103-6;


e) "Big Jim's" BBB Deer Ration, Big Buck Blend, Recall # V-104-6;


f) CO-OP 40% Hog Supplement Medicated Pelleted, Tylosin 100 grams/ton, 50 lb. bag, Recall # V-105-6;


g) Pig Starter Pell II, 18% W/MCDX Medicated 282020, Carbadox -- 0.0055%, Recall # V-106-6;


h) CO-OP STARTER-GROWER CRUMBLES, Complete Feed for Chickens from Hatch to 20 Weeks, Medicated, Bacitracin Methylene Disalicylate, 25 and 50 Lbs, Recall # V-107-6;


i) CO-OP LAYING PELLETS, Complete Feed for Laying Chickens, Recall # 108-6;


j) CO-OP LAYING CRUMBLES, Recall # V-109-6;


k) CO-OP QUAIL FLIGHT CONDITIONER MEDICATED, net wt 50 Lbs, Recall # V-110-6;


l) CO-OP QUAIL STARTER MEDICATED, Net Wt. 50 Lbs, Recall # V-111-6;


m) CO-OP QUAIL GROWER MEDICATED, 50 Lbs, Recall # V-112-6 CODE


Product manufactured from 02/01/2005 until 06/06/2006


RECALLING FIRM/MANUFACTURER Alabama Farmers Cooperative, Inc., Decatur, AL, by telephone, fax, email and visit on June 9, 2006. FDA initiated recall is complete.


REASON Animal and fish feeds which were possibly contaminated with ruminant based protein not labeled as "Do not feed to ruminants".


VOLUME OF PRODUCT IN COMMERCE 125 tons


DISTRIBUTION AL and FL


END OF ENFORCEMENT REPORT FOR AUGUST 2, 2006


###





MAD COW FEED RECALL USA EQUALS 10,878.06 TONS NATIONWIDE Sun Jul 16, 2006 09:22 71.248.128.67


RECALLS AND FIELD CORRECTIONS: VETERINARY MEDICINE -- CLASS II


______________________________


PRODUCT


a) PRO-LAK, bulk weight, Protein Concentrate for Lactating Dairy Animals, Recall # V-079-6;


b) ProAmino II, FOR PREFRESH AND LACTATING COWS, net weight 50lb (22.6 kg), Recall # V-080-6;


c) PRO-PAK, MARINE & ANIMAL PROTEIN CONCENTRATE FOR USE IN ANIMAL FEED, Recall # V-081-6;


d) Feather Meal, Recall # V-082-6 CODE


a) Bulk


b) None


c) Bulk


d) Bulk


RECALLING FIRM/MANUFACTURER H. J. Baker & Bro., Inc., Albertville, AL, by telephone on June 15, 2006 and by press release on June 16, 2006. Firm initiated recall is ongoing.


REASON


Possible contamination of animal feeds with ruminent derived meat and bone meal.


VOLUME OF PRODUCT IN COMMERCE 10,878.06 tons


DISTRIBUTION Nationwide


END OF ENFORCEMENT REPORT FOR July 12, 2006


###





Saturday, July 23, 2011


CATTLE HEADS WITH TONSILS, BEEF TONGUES, SPINAL CORD, SPECIFIED RISK MATERIALS (SRM's) AND PRIONS, AKA MAD COW DISEASE





Saturday, November 6, 2010


TAFS1 Position Paper on Position Paper on Relaxation of the Feed Ban in the EU Berne, 2010 TAFS


INTERNATIONAL FORUM FOR TRANSMISSIBLE ANIMAL DISEASES AND FOOD SAFETY a non-profit Swiss Foundation





10,000,000+ LBS. of PROHIBITED BANNED MAD COW FEED I.E. BLOOD LACED MBM IN COMMERCE USA 2007


Date: March 21, 2007 at 2:27 pm PST


RECALLS AND FIELD CORRECTIONS: VETERINARY MEDICINES -- CLASS II


PRODUCT


Bulk cattle feed made with recalled Darling's 85% Blood Meal, Flash Dried, Recall # V-024-2007


CODE


Cattle feed delivered between 01/12/2007 and 01/26/2007


RECALLING FIRM/MANUFACTURER


Pfeiffer, Arno, Inc, Greenbush, WI. by conversation on February 5, 2007.


Firm initiated recall is ongoing.


REASON


Blood meal used to make cattle feed was recalled because it was cross- contaminated with prohibited bovine meat and bone meal that had been manufactured on common equipment and labeling did not bear cautionary BSE statement. VOLUME OF PRODUCT IN COMMERCE 42,090 lbs. DISTRIBUTION WI


___________________________________


PRODUCT


Custom dairy premix products: MNM ALL PURPOSE Pellet, HILLSIDE/CDL Prot- Buffer Meal, LEE, M.-CLOSE UP PX Pellet, HIGH DESERT/ GHC LACT Meal, TATARKA, M CUST PROT Meal, SUNRIDGE/CDL PROTEIN Blend, LOURENZO, K PVM DAIRY Meal, DOUBLE B DAIRY/GHC LAC Mineral, WEST PIONT/GHC CLOSEUP Mineral, WEST POINT/GHC LACT Meal, JENKS, J/COMPASS PROTEIN Meal, COPPINI - 8# SPECIAL DAIRY Mix, GULICK, L-LACT Meal (Bulk), TRIPLE J - PROTEIN/LACTATION, ROCK CREEK/GHC MILK Mineral, BETTENCOURT/GHC S.SIDE MK-MN, BETTENCOURT #1/GHC MILK MINR, V&C DAIRY/GHC LACT Meal, VEENSTRA, F/GHC LACT Meal, SMUTNY, A- BYPASS ML W/SMARTA, Recall # V-025-2007


CODE


The firm does not utilize a code - only shipping documentation with commodity and weights identified.


RECALLING FIRM/MANUFACTURER


Rangen, Inc, Buhl, ID, by letters on February 13 and 14, 2007. Firm initiated recall is complete.


REASON


Products manufactured from bulk feed containing blood meal that was cross contaminated with prohibited meat and bone meal and the labeling did not bear cautionary BSE statement.


VOLUME OF PRODUCT IN COMMERCE


9,997,976 lbs.


DISTRIBUTION


ID and NV


END OF ENFORCEMENT REPORT FOR MARCH 21, 2007





Identification of a second bovine amyloidotic spongiform encephalopathy: Molecular similarities with sporadic Creutzfeldt–Jakob disease


Cristina Casalone*†, Gianluigi Zanusso†‡, Pierluigi Acutis*, Sergio Ferrari‡, Lorenzo Capucci§, Fabrizio Tagliavini¶, Salvatore Monaco‡ , and Maria Caramelli* *Centro di Referenza Nazionale per le Encefalopatie Animali, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna, 148, 10195 Turin, Italy; ‡Department of Neurological and Visual Science, Section of Clinical Neurology, Policlinico G.B. Rossi, Piazzale L.A. Scuro, 10, 37134 Verona, Italy; §Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna, Via Bianchi, 9, 25124 Brescia, Italy; and ¶Istituto Nazionale Neurologico ‘‘Carlo Besta,’’ Via Celoria 11, 20133 Milan, Italy


Edited by Stanley B. Prusiner, University of California, San Francisco, CA, and approved December 23, 2003 (received for review September 9, 2003)


Transmissible spongiform encephalopathies (TSEs), or prion diseases, are mammalian neurodegenerative disorders characterized by a posttranslational conversion and brain accumulation of an insoluble, protease-resistant isoform (PrPSc) of the host-encoded cellular prion protein (PrPC). Human and animal TSE agents exist as different phenotypes that can be biochemically differentiated on the basis of the molecular mass of the protease-resistant PrPSc fragments and the degree of glycosylation. Epidemiological, molecular, and transmission studies strongly suggest that the single strain of agent responsible for bovine spongiform encephalopathy (BSE) has infected humans, causing variant Creutzfeldt–Jakob disease. The unprecedented biological properties of the BSE agent, which circumvents the so-called ‘‘species barrier’’ between cattle and humans and adapts to different mammalian species, has raised considerable concern for human health. To date, it is unknown whether more than one strain might be responsible for cattle TSE or whether the BSE agent undergoes phenotypic variation after natural transmission. Here we provide evidence of a second cattle TSE. The disorder was pathologically characterized by the presence of PrP-immunopositive amyloid plaques, as opposed to the lack of amyloid deposition in typical BSE cases, and by a different pattern of regional distribution and topology of brain PrPSc accumulation. In addition, Western blot analysis showed a PrPSc type with predominance of the low molecular mass glycoform and a protease- resistant fragment of lower molecular mass than BSE-PrPSc. Strikingly, the molecular signature of this previously undescribed bovine PrPSc was similar to that encountered in a distinct subtype of sporadic Creutzfeldt–Jakob disease.


Phenotypic Similarities Between BASE and sCJD. The transmissibility of CJD brains was initially demonstrated in primates (27), and classification of atypical cases as CJD was based on this property (28). To date, no systematic studies of strain typing in sCJD have been provided, and classification of different subtypes is based on clinical, neuropathological, and molecular features (the polymorphic PRNP codon 129 and the PrPSc glycotype) (8, 9, 15, 19). The importance of molecular PrPSc characterization in assessing the identity of TSE strains is underscored by several studies, showing that the stability of given disease-specific PrPSc types is maintained upon experimental propagation of sCJD, familial CJD, and vCJD isolates in transgenic PrP-humanized mice (8, 29). Similarly, biochemical properties of BSE- and vCJDassociated PrPSc molecules remain stable after passage to mice expressing bovine PrP (30). Recently, however, it has been reported that PrP-humanized mice inoculated with BSE tissues may also propagate a distinctive PrPSc type, with a ‘‘monoglycosylated- dominant’’ pattern and electrophoretic mobility of the unglycosylated fragment slower than that of vCJD and BSE (31). Strikingly, this PrPSc type shares its molecular properties with the a PrPSc molecule found in classical sCJD. This observation is at variance with the PrPSc type found in M V2 sCJD cases and in cattle BASE, showing a monoglycosylated-dominant pattern but faster electrophoretic mobility of the protease-resistant fragment as compared with BSE. In addition to molecular properties of PrPSc, BASE and M V2 sCJD share a distinctive pattern of intracerebral PrP deposition, which occurs as plaque-like and amyloid-kuru plaques. Differences were, however, observed in the regional distribution of PrPSc. While inM V2 sCJD cases the largest amounts of PrPSc were detected in the cerebellum, brainstem, and striatum, in cattle BASE these areas were less involved and the highest levels of PrPSc were recovered from the thalamus and olfactory regions.


In conclusion, decoding the biochemical PrPSc signature of individual human and animal TSE strains may allow the identification of potential risk factors for human disorders with unknown etiology, such as sCJD. However, although BASE and sCJD share several characteristics, caution is dictated in assessing a link between conditions affecting two different mammalian species, based on convergent biochemical properties of diseaseassociated PrPSc types. Strains of TSE agents may be better characterized upon passage to transgenic mice. In the interim until this is accomplished, our present findings suggest a strict epidemiological surveillance of cattle TSE and sCJD based on molecular criteria.





Employment Listings position: Post Doctoral Fellow | Atypical BSE in Cattle


Closing date: December 24, 2009


Anticipated start date: January/February 2010


Employer: Canadian and OIE Reference Laboratories for BSE CFIA Lethbridge Laboratory, Lethbridge/Alberta


The Canadian and OIE reference laboratories for BSE are extensively involved in prion diseases diagnosis and research. With a recent increase in research activities and funding, the laboratory is looking to fill two post doctoral fellow positions. Both positions will be located at the Canadian Food Inspection Agency (CFIA) Lethbridge Laboratory which offers biosaftey level 3 (BSL3) and BSL2 laboratory space and is well equipped for molecular and morphologic prion research. The facility also has a BSL3 large animal housing wing and a state of the art post mortem room certified for prion work. Successful candidates will have the opportunity to visit other laboratories to cooperate in various aspects of the projects and to be trained in new techniques and acquire new skills. With a recent increase in prion disease expertise and research in Alberta and Canada, these positions will offer significant exposure to cutting edge prion science via videoconferencing, meetings, workshops and conferences. These interactions will also provide a valuable opportunity to present research findings and discuss potential future work opportunities and collaborations with other Canadian and international research groups.


Atypical BSE in Cattle


BSE has been linked to the human disease variant Creutzfeldt Jakob Disease (vCJD). The known exposure pathways for humans contracting vCJD are through the consumption of beef and beef products contaminated by the BSE agent and through blood transfusions. However, recent scientific evidence suggests that the BSE agent may play a role in the development of other forms of human prion diseases as well. These studies suggest that classical type of BSE may cause type 2 sporadic CJD and that H-type atypical BSE is connected with a familial form of CJD.


To date the OIE/WAHO assumes that the human and animal health standards set out in the BSE chapter for classical BSE (C-Type) applies to all forms of BSE which include the H-type and L-type atypical forms. This assumption is scientifically not completely justified and accumulating evidence suggests that this may in fact not be the case. Molecular characterization and the spatial distribution pattern of histopathologic lesions and immunohistochemistry (IHC) signals are used to identify and characterize atypical BSE. Both the L-type and H-type atypical cases display significant differences in the conformation and spatial accumulation of the disease associated prion protein (PrPSc) in brains of afflicted cattle. Transmission studies in bovine transgenic and wild type mouse models support that the atypical BSE types might be unique strains because they have different incubation times and lesion profiles when compared to C-type BSE. When L-type BSE was inoculated into ovine transgenic mice and Syrian hamster the resulting molecular fingerprint had changed, either in the first or a subsequent passage, from L-type into C-type BSE. In addition, non-human primates are specifically susceptible for atypical BSE as demonstrated by an approximately 50% shortened incubation time for L-type BSE as compared to C-type. Considering the current scientific information available, it cannot be assumed that these different BSE types pose the same human health risks as C-type BSE or that these risks are mitigated by the same protective measures.


This study will contribute to a correct definition of specified risk material (SRM) in atypical BSE. The incumbent of this position will develop new and transfer existing, ultra-sensitive methods for the detection of atypical BSE in tissue of experimentally infected cattle.


Responsibilities include:


Driving research at the National and OIE BSE reference lab to ensure project milestones are met successfully. Contributing to the preparation of project progress reports. Directing technical staff working on the project. Communicating and discussing results, progress and future direction with project principle investigator(s). Communicating with collaborative project partners.


Qualifications:


Successful completion of a PhD degree in an area focusing on or related to prion diseases. Extensive experience with molecular and/or morphologic techniques used in studying prion diseases and/or other protein misfolding disorders. Ability to think independently and contribute new ideas. Excellent written and oral communication skills. Ability to multitask, prioritize, and meet challenges in a timely manner. Proficiency with Microsoft Office, especially Word, PowerPoint and Excel.


How to apply:


Please send your application and/or inquiry to: Dr. Stefanie Czub, DVM, Ph.D. Head, National and OIE BSE Reference Laboratory Canadian Food Inspection Agency Lethbridge Laboratory P.O. Box 640, Township Road 9-1 Lethbridge, AB, T1J 3Z4 Canada


phone: +1-403-382-5500 +1-403-382-5500 ext. 5549 email: stefanie.czub@inspection.gc.ca


Contact Info:


Last Updated: 12/10/2009 1:35:18 PM







Thursday, August 12, 2010


Seven main threats for the future linked to prions


First threat


The TSE road map defining the evolution of European policy for protection against prion diseases is based on a certain numbers of hypotheses some of which may turn out to be erroneous. In particular, a form of BSE (called atypical Bovine Spongiform Encephalopathy), recently identified by systematic testing in aged cattle without clinical signs, may be the origin of classical BSE and thus potentially constitute a reservoir, which may be impossible to eradicate if a sporadic origin is confirmed.


***Also, a link is suspected between atypical BSE and some apparently sporadic cases of Creutzfeldt-Jakob disease in humans. These atypical BSE cases constitute an unforeseen first threat that could sharply modify the European approach to prion diseases.


Second threat


snip...







2012 CALIFORNIA ATYPICAL L-TYPE BASE BSE MAD COW, SPONTANEOUS AND FEED $$$




Saturday, May 26, 2012


Are USDA assurances on mad cow case 'gross oversimplification'?


SNIP...


What irks many scientists is the USDA’s April 25 statement that the rare disease is “not generally associated with an animal consuming infected feed.”


The USDA’s conclusion is a “gross oversimplification,” said Dr. Paul Brown, one of the world’s experts on this type of disease who retired recently from the National Institutes of Health. "(The agency) has no foundation on which to base that statement.”


“We can’t say it’s not feed related,” agreed Dr. Linda Detwiler, an official with the USDA during the Clinton Administration now at Mississippi State.


In the May 1 email to me, USDA’s Cole backed off a bit. “No one knows the origins of atypical cases of BSE,” she said


The argument about feed is critical because if feed is the cause, not a spontaneous mutation, the California cow could be part of a larger outbreak.


SNIP...






MAD COW USDA ATYPICAL L-TYPE BASE BSE, the rest of the story...




***Oral Transmission of L-type Bovine Spongiform Encephalopathy in Primate Model






***Infectivity in skeletal muscle of BASE-infected cattle






***feedstuffs- It also suggests a similar cause or source for atypical BSE in these countries.






***Also, a link is suspected between atypical BSE and some apparently sporadic cases of Creutzfeldt-Jakob disease in humans.






full text ;


atypical L-type BASE BSE






Tuesday, May 1, 2012


BSE MAD COW LETTERS TO USDA (Tom Vilsack, Secretary of Agriculture) and FDA (Magaret Hamburg, Commissioner of FDA) May 1, 2012






Wednesday, May 2, 2012


ARS FLIP FLOPS ON SRM REMOVAL FOR ATYPICAL L-TYPE BASE BSE RISK HUMAN AND ANIMAL HEALTH






Friday, May 4, 2012


May 2, 2012: Update from APHIS Regarding a Detection of Bovine Spongiform Encephalopathy (BSE) in the United States















Sunday, March 11, 2012


APHIS Proposes New Bovine Spongiform Encephalopathy Import Regulations in Line with International Animal Health Standards Proposal Aims to Ensure Health of the U.S. Beef Herd, Assist in Negotiations






Wednesday, April 4, 2012


Bovine Spongiform Encephalopathy; Importation of Bovines and Bovine Products APHIS-2008-0010-0008 RIN:0579-AC68






Sunday, May 6, 2012


Bovine Spongiform Encephalopathy Mad Cow Disease, BSE May 2, 2012 IOWA State University OIE






Friday, May 11, 2012


Experimental H-type bovine spongiform encephalopathy characterized by plaques and glial- and stellate-type prion protein deposits






Re: [BSE-L] Experimental H-type bovine spongiform encephalopathy characterized by plaques and glial- and stellate-type prion protein deposits


“Unfortunately, a detailed and all-encompassing analysis of neuropathology and topographical distribution of immunolabeled PrPSc in H-type BSE-affected cattle could not be performed, since only the obex region is routinely sampled for BSE surveillance testing and the remaining brain as well as the carcasses are not available in most countries [3,10,12,13,24-27]. Recently, clinical signs and biochemical properties of experimental German H-type BSE cases have been reported [20]. The primary objective of this study was to investigate the transmissibility of H-type BSE, using a field isolate detected in the active surveillance program in Canada [12]. The secondary objective was to extend the knowledge of the topographical distribution and deposition patterns of immunolabeled PrPSc in H-type BSE.”




PLEASE SEE ;


Tuesday, November 02, 2010


BSE - ATYPICAL LESION DISTRIBUTION (RBSE 92-21367) statutory (obex only) diagnostic criteria CVL 1992







1992


NEW BRAIN DISORDER


3. WHAT ABOUT REPORTS OF NEW FORM OF BSE ?


THE VETERINARY RECORD HAS PUBLISHED AN ARTICLE ON A NEW BRAIN DISORDER OF CATTLE DISCOVERED THROUGH OUR CONTROL MEASURES FOR BSE. ALTHOUGH IT PRESENTS SIMILAR CLINICAL SIGNS TO BSE THERE ARE MAJOR DIFFERENCES IN HISTOPATHOLOGY AND INCUBATION PERIODS BETWEEN THE TWO. MUST EMPHASISE THAT THIS IS _NOT_ BSE.


4. IS THIS NEW BRAIN DISORDER A THREAT ?


WE DO NOT EVEN KNOW WHETHER THE AGENT OF THIS DISEASE IS TRANSMISSIBLE. IN ANY CASE, CASES SO FAR IDENTIFIED HAD SHOWN SIMILAR SYMPTOMS TO THOSE OF BSE, AND THEREFORE HAVE BEEN SLAUGHTERED AND INCINERATED, SO THAT IF A TRANSMISSIBLE AGENT WERE INVOLVED IT WOULD HAVE BEEN ELIMINATED. ...







Tuesday, November 17, 2009


SEAC NEW RESULTS ON IDIOPATHIC BRAINSTEM NEURONAL CHROMATOLYSIS (IBNC) FROM THE VETERINARY LABORATORIES AGENCY (VLA) SEAC 103/1






NEW RESULTS ON IDIOPATHIC BRAINSTEM NEURONAL CHROMATOLYSIS




"All of the 15 cattle tested showed that the brains had abnormally accumulated PrP"




2009








''THE LINE TO TAKE'' ON IBNC $$$ 1995 $$$


1995


page 9 of 14 ;


30. The Committee noted that the results were unusual. the questioned whether there could be coincidental BSE infection or contamination with scrapie. Dr. Tyrell noted that the feeling of the committee was that this did not represent a new agent but it was important to be prepared to say something publicly about these findings. A suggested line to take was that these were scientifically unpublishable results but in line with the policy of openness they would be made publicly available and further work done to test their validity. Since the BSE precautions were applied to IBNC cases, human health was protected. Further investigations should be carried out on isolations from brains of IBNC cases with removal of the brain and subsequent handling under strict conditions to avoid the risk of any contamination.


31. Mr. Bradley informed the Committee that the CVO had informed the CMO about the IBNC results and the transmission from retina and he, like the Committee was satisfied that the controls already in place or proposed were adequate. ... snip... see full text










Wednesday, July 28, 2010


Atypical prion proteins and IBNC in cattle DEFRA project code SE1796 FOIA Final report






Tuesday, November 02, 2010


BSE - ATYPICAL LESION DISTRIBUTION (RBSE 92-21367) statutory (obex only) diagnostic criteria CVL 1992






2012



Friday, May 25, 2012


R-CALF USDA’s New BSE Rule Eliminates Important Protections Needed to Prevent BSE Spread






Thursday, June 14, 2012


R-CALF USA Calls USDA Dishonest and Corrupt; Submits Fourth Request for Extension


R-CALF United Stockgrowers of America






Monday, June 18, 2012


R-CALF Submits Incomplete Comments Under Protest in Bizarre Rulemaking “Bovine Spongiform Encephalopathy; Importation of Bovines and Bovine Products”






Thursday, December 23, 2010


Molecular Typing of Protease-Resistant Prion Protein in Transmissible Spongiform Encephalopathies of Small Ruminants, France, 2002-2009


Volume 17, Number 1 January 2011






Thursday, November 18, 2010


Increased susceptibility of human-PrP transgenic mice to bovine spongiform encephalopathy following passage in sheep






P03.141


Aspects of the Cerebellar Neuropathology in Nor98


Gavier-Widén, D1; Benestad, SL2; Ottander, L1; Westergren, E1 1National Veterinary Insitute, Sweden; 2National Veterinary Institute,


Norway Nor98 is a prion disease of old sheep and goats. This atypical form of scrapie was first described in Norway in 1998. Several features of Nor98 were shown to be different from classical scrapie including the distribution of disease associated prion protein (PrPd) accumulation in the brain. The cerebellum is generally the most affected brain area in Nor98. The study here presented aimed at adding information on the neuropathology in the cerebellum of Nor98 naturally affected sheep of various genotypes in Sweden and Norway. A panel of histochemical and immunohistochemical (IHC) stainings such as IHC for PrPd, synaptophysin, glial fibrillary acidic protein, amyloid, and cell markers for phagocytic cells were conducted. The type of histological lesions and tissue reactions were evaluated. The types of PrPd deposition were characterized. The cerebellar cortex was regularly affected, even though there was a variation in the severity of the lesions from case to case. Neuropil vacuolation was more marked in the molecular layer, but affected also the granular cell layer. There was a loss of granule cells. Punctate deposition of PrPd was characteristic. It was morphologically and in distribution identical with that of synaptophysin, suggesting that PrPd accumulates in the synaptic structures. PrPd was also observed in the granule cell layer and in the white matter. The pathology features of Nor98 in the cerebellum of the affected sheep showed similarities with those of sporadic Creutzfeldt-Jakob disease in humans.


***The pathology features of Nor98 in the cerebellum of the affected sheep showed similarities with those of sporadic Creutzfeldt-Jakob disease in humans.







PR-26


NOR98 SHOWS MOLECULAR FEATURES REMINISCENT OF GSS


R. Nonno1, E. Esposito1, G. Vaccari1, E. Bandino2, M. Conte1, B. Chiappini1, S. Marcon1, M. Di Bari1, S.L. Benestad3, U. Agrimi1 1 Istituto Superiore di Sanità, Department of Food Safety and Veterinary Public Health, Rome, Italy (romolo.nonno@iss.it); 2 Istituto Zooprofilattico della Sardegna, Sassari, Italy; 3 National Veterinary Institute, Department of Pathology, Oslo, Norway


Molecular variants of PrPSc are being increasingly investigated in sheep scrapie and are generally referred to as "atypical" scrapie, as opposed to "classical scrapie". Among the atypical group, Nor98 seems to be the best identified. We studied the molecular properties of Italian and Norwegian Nor98 samples by WB analysis of brain homogenates, either untreated, digested with different concentrations of proteinase K, or subjected to enzymatic deglycosylation. The identity of PrP fragments was inferred by means of antibodies spanning the full PrP sequence. We found that undigested brain homogenates contain a Nor98-specific PrP fragment migrating at 11 kDa (PrP11), truncated at both the C-terminus and the N-terminus, and not N-glycosylated. After mild PK digestion, Nor98 displayed full-length PrP (FL-PrP) and N-glycosylated C-terminal fragments (CTF), along with increased levels of PrP11. Proteinase K digestion curves (0,006-6,4 mg/ml) showed that FL-PrP and CTF are mainly digested above 0,01 mg/ml, while PrP11 is not entirely digested even at the highest concentrations, similarly to PrP27-30 associated with classical scrapie. Above 0,2 mg/ml PK, most Nor98 samples showed only PrP11 and a fragment of 17 kDa with the same properties of PrP11, that was tentatively identified as a dimer of PrP11. Detergent solubility studies showed that PrP11 is insoluble in 2% sodium laurylsorcosine and is mainly produced from detergentsoluble, full-length PrPSc. Furthermore, among Italian scrapie isolates, we found that a sample with molecular and pathological properties consistent with Nor98 showed plaque-like deposits of PrPSc in the thalamus when the brain was analysed by PrPSc immunohistochemistry. Taken together, our results show that the distinctive pathological feature of Nor98 is a PrP fragment spanning amino acids ~ 90-155. This fragment is produced by successive N-terminal and C-terminal cleavages from a full-length and largely detergent-soluble PrPSc, is produced in vivo and is extremely resistant to PK digestion.


*** Intriguingly, these conclusions suggest that some pathological features of Nor98 are reminiscent of Gerstmann-Sträussler-Scheinker disease.


119







A newly identified type of scrapie agent can naturally infect sheep with resistant PrP genotypes


Annick Le Dur*,?, Vincent Béringue*,?, Olivier Andréoletti?, Fabienne Reine*, Thanh Lan Laï*, Thierry Baron§, Bjørn Bratberg¶, Jean-Luc Vilotte?, Pierre Sarradin**, Sylvie L. Benestad¶, and Hubert Laude*,? +Author Affiliations


*Virologie Immunologie Moléculaires and ?Génétique Biochimique et Cytogénétique, Institut National de la Recherche Agronomique, 78350 Jouy-en-Josas, France; ?Unité Mixte de Recherche, Institut National de la Recherche Agronomique-Ecole Nationale Vétérinaire de Toulouse, Interactions Hôte Agent Pathogène, 31066 Toulouse, France; §Agence Française de Sécurité Sanitaire des Aliments, Unité Agents Transmissibles Non Conventionnels, 69364 Lyon, France; **Pathologie Infectieuse et Immunologie, Institut National de la Recherche Agronomique, 37380 Nouzilly, France; and ¶Department of Pathology, National Veterinary Institute, 0033 Oslo, Norway


***Edited by Stanley B. Prusiner, University of California, San Francisco, CA (received for review March 21, 2005)


Abstract Scrapie in small ruminants belongs to transmissible spongiform encephalopathies (TSEs), or prion diseases, a family of fatal neurodegenerative disorders that affect humans and animals and can transmit within and between species by ingestion or inoculation. Conversion of the host-encoded prion protein (PrP), normal cellular PrP (PrPc), into a misfolded form, abnormal PrP (PrPSc), plays a key role in TSE transmission and pathogenesis. The intensified surveillance of scrapie in the European Union, together with the improvement of PrPSc detection techniques, has led to the discovery of a growing number of so-called atypical scrapie cases. These include clinical Nor98 cases first identified in Norwegian sheep on the basis of unusual pathological and PrPSc molecular features and "cases" that produced discordant responses in the rapid tests currently applied to the large-scale random screening of slaughtered or fallen animals. Worryingly, a substantial proportion of such cases involved sheep with PrP genotypes known until now to confer natural resistance to conventional scrapie. Here we report that both Nor98 and discordant cases, including three sheep homozygous for the resistant PrPARR allele (A136R154R171), efficiently transmitted the disease to transgenic mice expressing ovine PrP, and that they shared unique biological and biochemical features upon propagation in mice. *** These observations support the view that a truly infectious TSE agent, unrecognized until recently, infects sheep and goat flocks and may have important implications in terms of scrapie control and public health.





Monday, December 1, 2008


When Atypical Scrapie cross species barriers


Authors


Andreoletti O., Herva M. H., Cassard H., Espinosa J. C., Lacroux C., Simon S., Padilla D., Benestad S. L., Lantier F., Schelcher F., Grassi J., Torres, J. M., UMR INRA ENVT 1225, Ecole Nationale Veterinaire de Toulouse.France; ICISA-INlA, Madrid, Spain; CEA, IBiTec-5, DSV, CEA/Saclay, Gif sur Yvette cedex, France; National Veterinary Institute, Postboks 750 Sentrum, 0106 Oslo, Norway, INRA IASP, Centre INRA de Tours, 3738O Nouzilly, France.


Content


Atypical scrapie is a TSE occurring in small ruminants and harbouring peculiar clinical, epidemiological and biochemical properties. Currently this form of disease is identified in a large number of countries. In this study we report the transmission of an atypical scrapie isolate through different species barriers as modeled by transgenic mice (Tg) expressing different species PRP sequence.


The donor isolate was collected in 1995 in a French commercial sheep flock. inoculation into AHQ/AHQ sheep induced a disease which had all neuro-pathological and biochemical characteristics of atypical scrapie. Transmitted into Transgenic mice expressing either ovine or PrPc, the isolate retained all the described characteristics of atypical scrapie.


Surprisingly the TSE agent characteristics were dramatically different v/hen passaged into Tg bovine mice. The recovered TSE agent had biological and biochemical characteristics similar to those of atypical BSE L in the same mouse model. Moreover, whereas no other TSE agent than BSE were shown to transmit into Tg porcine mice, atypical scrapie was able to develop into this model, albeit with low attack rate on first passage.


Furthermore, after adaptation in the porcine mouse model this prion showed similar biological and biochemical characteristics than BSE adapted to this porcine mouse model. Altogether these data indicate.


(i) the unsuspected potential abilities of atypical scrapie to cross species barriers


(ii) the possible capacity of this agent to acquire new characteristics when crossing species barrier


These findings raise some interrogation on the concept of TSE strain and on the origin of the diversity of the TSE agents and could have consequences on field TSE control measures.






Thursday, January 26, 2012


Facilitated Cross-Species Transmission of Prions in Extraneural Tissue


Science 27 January 2012: Vol. 335 no. 6067 pp. 472-475 DOI: 10.1126/science.1215659






Saturday, February 11, 2012


Prion cross-species transmission efficacy is tissue dependent




Thursday, January 26, 2012


The Risk of Prion Zoonoses


Science 27 January 2012: Vol. 335 no. 6067 pp. 411-413 DOI: 10.1126/science.1218167






1: J Infect Dis 1980 Aug;142(2):205-8


Oral transmission of kuru, Creutzfeldt-Jakob disease, and scrapie to nonhuman primates.


Gibbs CJ Jr, Amyx HL, Bacote A, Masters CL, Gajdusek DC.


Kuru and Creutzfeldt-Jakob disease of humans and scrapie disease of sheep and goats were transmitted to squirrel monkeys (Saimiri sciureus) that were exposed to the infectious agents only by their nonforced consumption of known infectious tissues. The asymptomatic incubation period in the one monkey exposed to the virus of kuru was 36 months; that in the two monkeys exposed to the virus of Creutzfeldt-Jakob disease was 23 and 27 months, respectively; and that in the two monkeys exposed to the virus of scrapie was 25 and 32 months, respectively. Careful physical examination of the buccal cavities of all of the monkeys failed to reveal signs or oral lesions. One additional monkey similarly exposed to kuru has remained asymptomatic during the 39 months that it has been under observation.


snip...


The successful transmission of kuru, Creutzfeldt-Jakob disease, and scrapie by natural feeding to squirrel monkeys that we have reported provides further grounds for concern that scrapie-infected meat may occasionally give rise in humans to Creutzfeldt-Jakob disease.


PMID: 6997404






12/10/76


AGRICULTURAL RESEARCH COUNCIL REPORT OF THE ADVISORY COMMITTE ON SCRAPIE


Office Note CHAIRMAN: PROFESSOR PETER WILDY


snip...


A The Present Position with respect to Scrapie A] The Problem Scrapie is a natural disease of sheep and goats. It is a slow and inexorably progressive degenerative disorder of the nervous system and it ia fatal. It is enzootic in the United Kingdom but not in all countries. The field problem has been reviewed by a MAFF working group (ARC 35/77). It is difficult to assess the incidence in Britain for a variety of reasons but the disease causes serious financial loss; it is estimated that it cost Swaledale breeders alone $l.7 M during the five years 1971-1975. A further inestimable loss arises from the closure of certain export markets, in particular those of the United States, to British sheep. It is clear that scrapie in sheep is important commercially and for that reason alone effective measures to control it should be devised as quickly as possible. Recently the question has again been brought up as to whether scrapie is transmissible to man. This has followed reports that the disease has been transmitted to primates.


One particularly lurid speculation (Gajdusek 1977) conjectures that the agents of scrapie, kuru, Creutzfeldt-Jakob disease and transmissible encephalopathy of mink are varieties of a single "virus". The U.S. Department of Agriculture concluded that it could "no longer justify or permit scrapie-blood line and scrapie-exposed sheep and goats to be processed for human or animal food at slaughter or rendering plants" (ARC 84/77)" The problem is emphasised by the finding that some strains of scrapie produce lesions identical to the once which characterise the human dementias" Whether true or not. the hypothesis that these agents might be transmissible to man raises two considerations. First, the safety of laboratory personnel requires prompt attention. Second, action such as the "scorched meat" policy of USDA makes the solution of the acrapie problem urgent if the sheep industry is not to suffer grievously.


snip...


76/10.12/4.6






Nature. 1972 Mar 10;236(5341):73-4.


Transmission of scrapie to the cynomolgus monkey (Macaca fascicularis).


Gibbs CJ Jr, Gajdusek DC. Nature 236, 73 - 74 (10 March 1972); doi:10.1038/236073a0


Transmission of Scrapie to the Cynomolgus Monkey (Macaca fascicularis)


C. J. GIBBS jun. & D. C. GAJDUSEK National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, Maryland


SCRAPIE has been transmitted to the cynomolgus, or crab-eating, monkey (Macaca fascicularis) with an incubation period of more than 5 yr from the time of intracerebral inoculation of scrapie-infected mouse brain. The animal developed a chronic central nervous system degeneration, with ataxia, tremor and myoclonus with associated severe scrapie-like pathology of intensive astroglial hypertrophy and proliferation, neuronal vacuolation and status spongiosus of grey matter. The strain of scrapie virus used was the eighth passage in Swiss mice (NIH) of a Compton strain of scrapie obtained as ninth intracerebral passage of the agent in goat brain, from Dr R. L. Chandler (ARC, Compton, Berkshire).






Nature. 1972 Mar 10;236(5341):73-4.


Transmission of scrapie to the cynomolgus monkey (Macaca fascicularis).


Gibbs CJ Jr, Gajdusek DC. Nature 236, 73 - 74 (10 March 1972); doi:10.1038/236073a0


Transmission of Scrapie to the Cynomolgus Monkey (Macaca fascicularis)


C. J. GIBBS jun. & D. C. GAJDUSEK National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, Maryland


SCRAPIE has been transmitted to the cynomolgus, or crab-eating, monkey (Macaca fascicularis) with an incubation period of more than 5 yr from the time of intracerebral inoculation of scrapie-infected mouse brain. The animal developed a chronic central nervous system degeneration, with ataxia, tremor and myoclonus with associated severe scrapie-like pathology of intensive astroglial hypertrophy and proliferation, neuronal vacuolation and status spongiosus of grey matter. The strain of scrapie virus used was the eighth passage in Swiss mice (NIH) of a Compton strain of scrapie obtained as ninth intracerebral passage of the agent in goat brain, from Dr R. L. Chandler (ARC, Compton, Berkshire).






Wednesday, February 16, 2011


IN CONFIDENCE


SCRAPIE TRANSMISSION TO CHIMPANZEES


IN CONFIDENCE






why do we not want to do TSE transmission studies on chimpanzees $


snip...


5. A positive result from a chimpanzee challenged severly would likely create alarm in some circles even if the result could not be interpreted for man. I have a view that all these agents could be transmitted provided a large enough dose by appropriate routes was given and the animals kept long enough. Until the mechanisms of the species barrier are more clearly understood it might be best to retain that hypothesis.


snip...


R. BRADLEY






Friday, February 11, 2011


Atypical/Nor98 Scrapie Infectivity in Sheep Peripheral Tissues






Monday, April 25, 2011


Experimental Oral Transmission of Atypical Scrapie to Sheep


Volume 17, Number 5-May 2011






Sunday, April 18, 2010


SCRAPIE AND ATYPICAL SCRAPIE TRANSMISSION STUDIES A REVIEW 2010






Thursday, November 18, 2010


Increased susceptibility of human-PrP transgenic mice to bovine spongiform encephalopathy following passage in sheep






Wednesday, January 19, 2011


EFSA and ECDC review scientific evidence on possible links between TSEs in animals and humans Webnachricht 19 Januar 2011






Monday, June 27, 2011


Comparison of Sheep Nor98 with Human Variably Protease-Sensitive Prionopathy and Gerstmann-Sträussler-Scheinker Disease






RESEARCH


Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 17, No. 5, May 2011


Experimental Oral Transmission of Atypical Scrapie to Sheep


Marion M. Simmons, S. Jo Moore,1 Timm Konold, Lisa Thurston, Linda A. Terry, Leigh Thorne, Richard Lockey, Chris Vickery, Stephen A.C. Hawkins, Melanie J. Chaplin, and John Spiropoulos


To investigate the possibility of oral transmission of atypical scrapie in sheep and determine the distribution of infectivity in the animals’ peripheral tissues, we challenged neonatal lambs orally with atypical scrapie; they were then killed at 12 or 24 months. Screening test results were negative for disease-specifi c prion protein in all but 2 recipients; they had positive results for examination of brain, but negative for peripheral tissues. Infectivity of brain, distal ileum, and spleen from all animals was assessed in mouse bioassays; positive results were obtained from tissues that had negative results on screening. These fi ndings demonstrate that atypical scrapie can be transmitted orally and indicate that it has the potential for natural transmission and iatrogenic spread through animal feed. Detection of infectivity in tissues negative by current surveillance methods indicates that diagnostic sensitivity is suboptimal for atypical scrapie, and potentially infectious material may be able to pass into the human food chain.


SNIP...


Although we do not have epidemiologic evidence that supports the effi cient spread of disease in the fi eld, these data imply that disease is potentially transmissible under fi eld situations and that spread through animal feed may be possible if the current feed restrictions were to be relaxed. Additionally, almost no data are available on the potential for atypical scrapie to transmit to other food animal species, certainly by the oral route. However, work with transgenic mice has demonstrated the potential susceptibility of pigs, with the disturbing fi nding that the biochemical properties of the resulting PrPSc have changed on transmission (40). The implications of this observation for subsequent transmission and host target range are currently unknown.


How reassuring is this absence of detectable PrPSc from a public health perspective? The bioassays performed in this study are not titrations, so the infectious load of the positive gut tissues cannot be quantifi ed, although infectivity has been shown unequivocally. No experimental data are currently available on the zoonotic potential of atypical scrapie, either through experimental challenge of humanized mice or any meaningful epidemiologic correlation with human forms of TSE. However, the detection of infectivity in the distal ileum of animals as young as 12 months, in which all the tissues tested were negative for PrPSc by the currently available screening and confi rmatory diagnostic tests, indicates that the diagnostic sensitivity of current surveillance methods is suboptimal for detecting atypical scrapie and that potentially infectious material may be able to pass into the human food chain undetected.


Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 17, No. 5, May 2011






OIE Scrapie Chapter Revision • Current draft recognizes Nor98-like scrapie as a separate disease from classical scrapie • USDA provided comments on the draft to OIE






Atypical scrapie/Nor 98 October 2009


Last year, after examining member country submissions and investigating rigorous scientific research, the World Organisation for Animal Health (OIE) decided that Nor 98 should not be listed in its Terrestrial Animal Health Code. The Code sets out trade recommendations or restrictions for listed diseases or conditions, and the OIE determined there was no need for such recommendations around Nor 98.










Sutton reported that USDA has urged the World Organization for Animal Health (OIE) to categorize Nor98-like scrapie as a separate disease from classical scrapie. Currently, the OIE has proposed a draft revision of their scrapie chapter that would exclude Nor98-like scrapie from the chapter. USDA will be submitting it's comments on this proposal soon.






SCRAPIE


The United States is unable to support the proposed new draft Code Chapter on Scrapie. The draft chapter, as written, departs significantly from the existing chapter, is confusing and is difficult to understand. This version of the scrapie chapter uses much of the same wording as the BSE chapter and is written as if the predominance of evidence revealed that scrapie was a food-borne disease similar to BSE in cattle which is inappropriate. Moreover, several of the new changes are not supported by current scientific evidence. As a result, detailed comments on individual articles would not meaningful at this time.


The United States is not supportive of the proposed draft chapter for the following reasons: 1. Inclusion of “atypical” scrapie: The scientific evidence indicates that “atypical” scrapie, also referred to as Nor-98, Nor-98-like, or non-classical scrapie, is not the same disease as classical scrapie. Further, “atypical” scrapie does not meet the criteria for listing diseases of trade concern by the OIE, as described in Chapter 2.1.1 of the Code. The United States recommends that the scope of this chapter be limited to classical scrapie in sheep and goats. Further, the United States recommends that OIE clearly adopt the position that “atypical” scrapie represents a distinct disease entity from classical scrapie and that it not be a listed disease.


• There is no evidence that “atypical” scrapie is a contagious disease. If it is contagious, available evidence suggests that it has a much lower transmission efficiency. (Hopp, et al, 2006; Green, et al, 2007; Benestad, et al 2008; McIntyre, et al, 2008)


• The disease appears to be ubiquitous in that it has been found wherever sufficient surveillance has been conducted. (Buschmann et al, 2004; De Bosschere et al, 2004; Orge, et al, 2004; Everest et al, 2006; Arsac, 2007; Benestad, et al 2008; Fediaevsky, et al, 2008)


• The disease does not appear to be economically significant in that the prevalence of clinical disease is low and it typically occurs in older animals. (Luhken, et al., 2007; Benestad, et al 2008).


• The disease is as likely as not to be the result of a spontaneous conversion of normal prion protein. (Benestad, et al 2008, De Bosschere et al 2007)


• Removal of exposed sheep is unlikely to reduce the prevalence of “atypical” scrapie infection and removing only those exposed sheep that are phenylalanine (F) at codon 141 is scientifically unsound since the disease is known to affect sheep of most other genotypes. Further, sheep with AHQ alleles have a similar risk of infection with “atypical” strains as sheep with F at codon 141. (Luhken, et al., 2007).


• If “atypical” scrapie is included as a listed disease, the surveillance and diagnostic requirements which are needed to identify these cases should be described in detail in both this Chapter and the Manual of Diagnostic Tests and Vaccines for Terrestrial


2


Animals. Data from Europe illustrates that using the proper test(s) is essential for the identification of atypical scrapie (Fediaevsky et al., 2008).


SNIP...


6. Overemphasis on importation and use of bovine meat and bone meal as a route of scrapie transmission: Given that the draft Chapter is not intended to address risk mitigation for BSE in small ruminants, we believe there is an over-emphasis on this potential route of transmission in the current draft.


The United States recommends that the requirements in this chapter be limited to the inclusion of products from sheep and goats (instead of from all ruminants) in feed or feed ingredients intended for consumption by animals.


• The use of products from sheep and goats as feed or feed ingredients for ruminant or non-ruminant animals represent one possible route of transmission (Philippe, et al, 2005) and a source of environmental contamination with the classical scrapie agent. However, this is not the primary route of transmission for the scrapie agent.


• The need for the exclusion of cattle-derived protein or other animal protein to mitigate BSE risk should be based on a country’s BSE risk status and should be addressed in Chapter 2.3.13 of the Code.


SNIP...


14. Failure to provide scientific justification for the list of permitted commodities in Item 1 of Article 2.4.8.1. .


We recommend that the list be re-evaluated and those items that have not been substantiated as presenting no risk be excluded or those with some risk but where the intended use mitigates the risk the use be specified.


• There is no known human health risk associated with scrapie. As such, if meat and meat products for human consumption are included in this list, sheep and/or goat milk intended for human consumption should also be added to the list of permitted commodities in Item 1 of Article 2.4.8.1.


• In the vast majority of sheep infected with classical scrapie, actual infectivity or PrPres has been identified in most tissues including the lymphoreticular system (tonsils, spleen, lymph nodes), the gastrointestinal tract, brain, and spinal cord (Hadlow et. al. 1979; Hadlow et al., 1980; van Kuelen et al., 1996; van Kuelen et al., 1999, Andreoletti et al., 2000; Heggebø et al., 2002; Caplazi et al., 2004). Infectivity and/or PrPres has also been identified in the placenta (see Hourrigan et al., 1979; Onodera et al., 1993; Pattison et al., 1972; Pattison et al., 1974; Race et al., 1998), blood (Hunter et al., 2002; Houston et al. 2008); peripheral nerves (Groschup et al., 1996), muscle (Pattison and Millson, 1962; Andreoletti et al., 2004; Casalone et al., 2005), salivary gland (Hadlow et al., 1980; Vascellari et al., 2007), kidney (Siso et al., 2006), and skin ( Thomzig et al., 2007). In addition, recent work has shown milk and/or colostrum from scrapie infected ewes transmitted the disease to 17 of 18 lambs (Konold et al., 2008).


• The data on the risk of low protein tallow made from scrapie infected tissues particularly for use in milk replacer is limited and some epidemiologic studies suggest an association of milk replacer use with scrapie risk. Taylor et al., 1997 examined the inactivation capacity of different rendering system in regards to scrapie. The presence of infectivity was determined by bioassay into mice. From the onset of this study, it was assumed that tallow was not the vehicle for the transmission of TSE. Hence only 2 tallow samples were examined.






• Most critical is that atypical scrapie shows higher prevalence in so-called resistant ARR homozygote and heterozygote genotypes, compared with classical scrapie. • Atypical scrapie has not been found naturally in VRQ/VRQ sheep, although such sheep can be infected artificially. VRQ sheep are, in contrast, highly susceptible to classical scrapie. In the UK, one case of atypical scrapie has been found in VRQ heterozygote (AF141RQ/VRQ) sheep. It is important to ascertain whether or not VRQ-carrying sheep are significantly resistant to infection with atypical scrapie or whether the data might result from a failure to detect PrPres in atypical scrapie due to a different pattern of PrP distribution in tissues. • Increased incidence of atypical scrapie in sheep with PrP alleles carrying the variant phenylalanine (F) at position 141 (leucine(L)/phenylalanine) has also been observed compared with classical scrapie. • It will be important to clarify the genotype effect, particularly in relation to ARR and L141F in transmission studies. • In classical scrapie, there is clear evidence for a PrP genotype effect on tissue distribution patterns of PrPres. This might also be true for atypical scrapie although the data are less complete. 4. Transmission of atypical scrapie It has recently18 been demonstrated that atypical scrapie is experimentally transmissible to mice and sheep, primarily through intracerebral injection. There are some data suggesting that it may also be transmissible orally to sheep of different genotypes. The subgroup noted that challenge experiments with atypical scrapie in sheep were underway in the UK, with one successful intracerebral challenge to date. The subgroup was informed that positive transmission of infectivity from atypical scrapie isolated from sheep with a range of genotypes had been observed in mice. This included ovinised transgenic mice overexpressing the VRQ allele. Nor98 atypical scrapie had also transmitted to ARR ovinised mice, with transmission experiments in AF141RQ ovinised mice planned. Biochemical features of the isolates were maintained after transmission, and were distinct from BSE and classical scrapie. High infectivity titres were observed in brain tissue from atypical scrapie, including from ARR/ARR sheep. Brain transmission experiments in mice carrying the human PrP gene were at an early stage. 18 Le Dur A., Béringue V., Andréoletti O., Reine F., Laï T.H., Baron T., Bratberg B., Vilotte J.- L., Sarradin P., Benestad S.L. and Laude H.(2005) A newly identified type of scrapie agent can naturally infect sheep with resistant PrP genotypes. PNAS 102, 16031-16036







BSE: TIME TO TAKE H.B. PARRY SERIOUSLY


If the scrapie agent is generated from ovine DNA and thence causes disease in other species, then perhaps, bearing in mind the possible role of scrapie in CJD of humans (Davinpour et al, 1985), scrapie and not BSE should be the notifiable disease. ...






Thursday, March 29, 2012


atypical Nor-98 Scrapie has spread from coast to coast in the USA 2012


NIAA Annual Conference April 11-14, 2011San Antonio, Texas






Monday, June 11, 2012


another atypical Nor-98 Scrapie case documented in Canada for 2012






too bad Canada’s policy on BSE aka mad cow type disease, and the reporting there from of completed cases, have ceased to exist on the CFIA site for the public to follow.



you have to request a copy. CFIA ceased giving those copies out to me. ...


•Request a copy of a completed BSE investigation report for a case after January 2009






Sunday, May 27, 2012


CANADA PLANS TO IMPRISON ANYONE SPEAKING ABOUT MAD COW or ANY OTHER DISEASE OUTBREAK, CENSORSHIP IS A TERRIBLE THING






Wednesday, June 13, 2012


MEXICO IS UNDER or MIS DIAGNOSING CREUTZFELDT JAKOB DISEASE AND OTHER PRION DISEASE SOME WITH POSSIBLE nvCJD






Saturday, March 5, 2011


MAD COW ATYPICAL CJD PRION TSE CASES WITH CLASSIFICATIONS PENDING ON THE RISE IN NORTH AMERICA






Sunday, February 12, 2012


National Prion Disease Pathology Surveillance Center Cases Examined1 (August 19, 2011) including Texas






Terry S. Singeltary Sr. on the Creutzfeldt-Jakob Disease Public Health Crisis








full text with source references ;






price of prion poker goes up again $$$


Monday, June 11, 2012


Guidance for Industry Draft Guidance for Industry: Amendment to “Guidance for Industry: Revised Preventive Measures to Reduce the Possible Risk of Transmission of Creutzfeldt-Jakob Disease and Variant Creutzfeldt-Jakob Disease by Blood and Blood Products”






Subject: Bovine Spongiform Encephalopathy; Importation of Bovines and Bovine Products APHIS-2008-0010-0008 RIN:0579-AC68


Comment from Terry Singeltary Document ID: APHIS-2008-0010-0008 Document Type: Public Submission This is comment on Proposed Rule: Bovine Spongiform Encephalopathy; Importation of Bovines and Bovine Products Docket ID: APHIS-2008-0010 RIN:0579-AC68


Topics: No Topics associated with this document View Document: More


Document Subtype: Public Comment Status: Posted Received Date: March 22 2012, at 12:00 AM Eastern Daylight Time Date Posted: March 22 2012, at 12:00 AM Eastern Daylight Time Comment Start Date: March 16 2012, at 12:00 AM Eastern Daylight Time Comment Due Date: May 15 2012, at 11:59 PM Eastern Daylight Time Tracking Number: 80fdd617 First Name: Terry Middle Name: S. Last Name: Singeltary City: Bacliff Country: United States State or Province: TX Organization Name: CJD TSE PRION Submitter's Representative: CONSUMERS


Comment: comment submission Document ID APHIS-2008-0010-0001 Greetings USDA, OIE et al, what a difference it makes with science, from one day to the next. i.e. that mad cow gold card the USA once held. up until that fateful day in December of 2003, the science of BSE was NO IMPORTS TO USA FROM BSE COUNTRY. what a difference a day makes$ now that the shoe is on the other foot, the USDA via the OIE, wants to change science again, just for trade $ I implore the OIE decision and policy makers, for the sake of the world, to refuse any status quo of the USA BSE risk assessment. if at al, the USA BSE GBR should be raise to BSE GBR IV, for the following reasons. North America is awash with many different TSE Prion strains, in many different species, and they are mutating and spreading. IF the OIE, and whatever policy makers, do anything but raise the risk factor for BSE in North America, they I would regard that to be highly suspicious. IN fact, it would be criminal in my opinion, because the OIE knows this, and to knowingly expose the rest of the world to this dangerous pathogen, would be ‘knowingly’ and ‘willfully’, just for the almighty dollar, once again. I warned the OIE about all this, including the risk factors for CWD, and the fact that the zoonosis potential was great, way back in 2002. THE OIE in collaboration with the USDA, made the legal trading of the atypical Nor-98 Scrapie a legal global commodity. yes, thanks to the OIE and the USDA et al, it’s now legal to trade the atypical Nor-98 Scrapie strain all around the globe. IF you let them, they will do the same thing with atypical BSE and CWD (both strains to date). This with science showing that indeed these TSE prion strains are transmissible. I strenuously urge the OIE et al to refuse any weakening to the USA trade protocols for the BSE TSE prion disease (all strains), and urge them to reclassify the USA with BSE GBR IV risk factor. SEE REFERENCE SOURCES IN ATTACHMENTS


SEE Terry S. Singeltary Sr. Attachment WORD FILE ;










Wednesday, April 4, 2012


Bovine Spongiform Encephalopathy; Importation of Bovines and Bovine Products APHIS-2008-0010-0008 RIN:0579-AC68






layperson



TSS


0 Comments:

Post a Comment

Subscribe to Post Comments [Atom]

<< Home