From: Terry S. Singeltary Sr. Sent: Tuesday, September 27, 2016 8:24 PM To:
Terry S. Singeltary Sr. Subject: Norway decides to expose millions of consumers
to the ATYPICAL BSE SRM TSE Prion aka mad cow type disease
Amendment of the TSE Regulations: Changes at BSE and SRM definitions,
labeling, trade and import of cattle and sheep products
--------------------------------------------------------------------------------
Publisert 27.09.2016 | Sist endret 27.09.2016 Published 09/27/2016 | Last
modified 27/09/2016 Skriv ut
Endringene fører blant annet til at en ny definisjon av BSE ikke tar med
tilfeller av atypisk BSE. The changes are among the causes that a new definition
of BSE do not include cases of atypical BSE. I tillegg endres merkekravene til
slakt og produkter med risikomateriale, og det gis lettelser i krav ved
samhandel med levende småfe og avlsprodukter under visse vilkår. In addition,
modified labeling requirements for slaughter and products with risk material,
and provides an easing of requirements for trade with live sheep and
avlsprodukter under certain conditions.
Som et ledd i EØS-avtalen gjennomfører Mattilsynet forordning (EU)
2016/1396 som endrer vedleggene til forordning (EF) nr. 999/2001. As part of the
EEA Agreement performs FSA Regulation (EC) 2016/1396 that modify Annexes to
Regulation (EC) No. 999/2001. Dette medfører at TSE-forskriften må endres. This
means that the TSE Regulations must be changed.
Atypisk BSE tas ut av definisjonen til BSE Atypical BSE removed from the
definition of BSE Endringene omfatter at atypisk BSE tas ut av definisjonen til
BSE (kugalskap). The changes include the atypical BSE taken out of the
definition of BSE (mad cow disease). Dette er i tråd med endring av definisjonen
for dyresykdommen i Verdens dyrehelseorganisasjon (OIE). This is in line with
the change of definition for animal disease in the world animal health
organization (OIE). Atypisk BSE smitter i motsetning til klassisk BSE ikke
gjennom fôret, men oppstår spontant. Atypical BSE is transmitted unlike
classical BSE not the liner but occurs spontaneously. Det er ingenting som tyder
på at atypisk BSE har negative konsekvenser for mattryggheten. There is nothing
to suggest that atypical BSE have negative consequences for food safety.
Merkekravene endres The labeling requirements changed Krav til merking av
slakt og produkter fra storfe som stammer fra land med risiko for BSE og krav om
spesiell behandling endres. Labelling requirements for slaughter and products
from cattle originating from countries with BSE risk and demands for special
treatment changed. Tidligere var det krav om merking dersom det ikke forelå krav
om at spesielt risikomateriale fjernes fra slaktet. Previously it require
labeling if there were no requirement that the special risk material is removed
from slaughtered. Dette endres nå til krav om merking dersom det foreligger krav
om at spesielt risikomateriale fjernes fra slaktet. This is now changing to
require labeling if there is a requirement that special risk material is removed
from slaughtered.
Videre tas tonsiller ut av definisjonen for risikomateriale dersom storfeet
stammer fra land med neglisjerbar BSE-risiko. Furthermore taken tonsils removed
from the definition of risk material if the herd originated from countries with
negligible BSE risk. Dette medfører at det ikke lenger vil være et krav om at
tonsillene ikke må følge med ved uttak av tunge fra norske storfeslakt. This
means that it will no longer be a requirement that the tonsils do not have to
pay attention when withdrawing heavy from Norwegian cattle slaughter.
Lettere å importere småfe fra Finland og Sverige Easier to import sheep
from Finland and Sweden Finland og Sverige har dokumentert en bedre status når
det gjelder klassisk skrapesjuke hos småfe. Finland and Sweden have documented a
better status in terms of classical scrapie in small ruminants. Dette medfører
at det blir lettere å innføre småfe fra disse landene til Norge. This means that
it is easier to introduce sheep from these countries to Norway. Innførsel av
levende dyr utgjør alltid en risiko for innførsel av dyresjukdom og bør unngås.
Importation of live animals is always a risk of introducing animal diseases and
should be avoided.
Det innføres lettelser i krav når det gjelder skrapesjuke ved forflytning
av hanndyr av småfe fra seminstasjoner til besetninger, under særskilte vilkår.
It introduced an easing of requirements in terms of scrapie when transferring
the males of sheep coming from semen to crews, under special conditions. Dette
begrunnes med at det er liten risiko for at hanndyr kan overføre smitte av
sykdommen. This is because there is little risk that males can transmit
infectious disease. Konsekvensen av dette er lettelser for avlsarbeidet for sau
og geit. The consequence of this is easing for the breeding of sheep and goats.
Lettelser i handelskrav innenfor EØS Easing trade requirements within the
EEA Det innføres lettelser i handelskrav for småfe når det gjelder skrapesjuke
ved handel innad i EØS med avlsprodukter, levende dyr mellom dyreparker og
levende dyr av spesielle raser. It introduced easing trade requirements for
sheep as regards scrapie trade within the EEA with avlsprodukter, live animals
between zoos and live animals of specific breeds. Lettelsene gis med særskilte
vilkår som ivaretar dyrehelsen. Easing granted with special conditions that
safeguard animal health. En av konsekvensene av dette er at det blir lettere å
handle med avlsprodukter enn med levende dyr, noe som er gunstig for bevaring av
den gode dyrehelsen i Norge. One of the consequences of this is that it is
easier to trade with avlsprodukter than live animals, which is beneficial to the
preservation of the good animal health in Norway.
Videre åpnes det for import av produkter fra storfe og småfe fra land med
høyere risiko for BSE, forutsatt at risikomateriale er fjernet fra råvarene.
Moreover, it opens the import of products from cattle and sheep from countries
with higher risk for BSE, provided that risk material is removed from the raw
materials.
Gangen i arbeidet er beskrevet i tidslinjen under, og den svarte boksen
viser hvor vi er i prosessen. The decline in the work described in the timeline
below, and the black box shows where we are in the process.
Tidslinje for dette arbeidet: Timeline for this work: Høring av
forskriftsendring sendes til klarering Hearing of the Regulation to be submitted
to clearance Mattilsynet har utarbeidet en forslag til forskriftsendring basert
på forordningsteksten. FSA has prepared a proposal for amending the regulations
based on Regulation text. Denne er nå sendt Landbruks- og matdepartementet for
klarering for høring. This has now been sent Agriculture and Food for clearance
for consultation.
27.09.2016 09/27/2016 Forskriftsutkast sendes på høring Regulations Draft
submitted for consultation Mattilsynet sender forskriftsutkast og høringsbrev ut
på høring. FSA sends draft regulations and consultation paper for consultation.
Oktober 2016 October 2016 Endringer i TSE-forskriften 3-2016 fastsettes
Amendments to the TSE Regulations 3-2016 determined Mattilsynet fastsetter
endringer i TSE-forskriften basert på forordning (EU) 2016/1396. FSA determines
changes in the TSE-regulation based on Regulation (EC) 2016/1396.
Bovine spongiform
encephalopathy ,Norway
Information received
on 29/01/2015 from Dre Kristina Landsverk, Chief Veterinary Officer, Norwegian
Food Safety Authority, Ministry of Agriculture and Food, Brumunddal,
Norway
Summary
Report
type
|
Immediate
notification
|
Date of start of the
event
|
16/01/2015
|
Date of pre-confirmation
of the event
|
20/01/2015
|
Report
date
|
29/01/2015
|
Date submitted to
OIE
|
29/01/2015
|
Reason for
notification
|
First occurrence of a
listed disease
|
Manifestation of
disease
|
Sub-clinical
infection
|
Causal
agent
|
Prion (atypical BSE type
H)
|
Nature of
diagnosis
|
Laboratory
(advanced)
|
This event pertains
to
|
the whole
country
|
New
outbreaks
Summary of
outbreaks
|
Total outbreaks:
1
|
Outbreak Location
|
- NORD-TRONDELAG ( Verran,
Tua, District office Innherred og Fosen, Region office Trøndelag og Møre og
Romdal )
|
Total animals
affected
|
Species
|
Susceptible
|
Cases
|
Deaths
|
Destroyed
|
Slaughtered
|
Cattle
|
27
|
1
|
0
|
1
|
0
|
|
Outbreak
statistics
|
Species
|
Apparent morbidity
rate
|
Apparent mortality
rate
|
Apparent case fatality
rate
|
Proportion susceptible
animals lost*
|
Cattle
|
3.70%
|
0.00%
|
0.00%
|
3.70%
|
* Removed from the
susceptible population through death, destruction and/or slaughter;
|
Epidemiology
Source of the outbreak(s)
or origin of infection
|
|
Epidemiological
comments
|
Based on status on 29
January 2015: On 20 January 2015, the Norwegian Veterinary Institute reported
suspicion of BSE on a cow in Norway, based on initial test done on CNS material.
Part of this material was sent to European Union Reference Laboratory in
Weybridge (21 January 2015) for verification of diagnosis. The affected cow was
a 15-year-old and born in Norway. The dam was imported from Sweden. The cow did
not show clinical signs of neurological disease before she was killed (12
January 2015) due to old age and injuries. The BSE test was taken as part of the
BSE surveillance program. The Norwegian Food Safety Authority (NFSA) has put
restrictions on movement on the farm, and performed epidemiological
investigations. The NFSA has identified four risk animals, according to relevant
legislation. These animals are also placed under official movement restrictions.
The four identified risk animals will be killed and disposed by incineration
according to European Union legislation. The epidemiological investigation
including tracing of risk animals from the holding of origin as well as the
present holding has identified 2 offspring borne within two years prior to the
incident in addition to 2 cattle belonging either to (1) the cohort of animals
born in the same herd as the affected animal within 12 months preceding or
following the date of birth of the affected cow or (2) the cohort of animals
which at any time during the first year of their lives were reared together with
the affected cow during her first year of life. Progeny borne within two years
prior to the incident and the cohort of risk animals are put under movement
restrictions and the killing and destruction of these animals will be carried
into effect as soon as possible. The affected cow’s carcass has been completely
destroyed. The NFSA ensures that the cow’s carcass has been processed by
pressure sterilisation in a Category 1 processing plant and that the resulting
material has been sent for incineration/co-incineration in accordance with the
By-Products Regulation.
|
Control
measures
Measures
applied
|
- Movement control inside
the country
- Screening
- No vaccination
- No treatment of affected
animals
|
Measures to be
applied
|
|
Diagnostic test
results
Laboratory name and
type
|
Norwegian Veterinary
Institute ( National laboratory )
|
Tests and
results
|
Species
|
Test
|
Test
date
|
Result
|
Cattle
|
enzyme-linked
immunosorbent assay (ELISA)
|
20/01/2015
|
Positive
|
Cattle
|
western
blot
|
20/01/2015
|
Positive
|
|
Laboratory name and
type
|
EU Reference Laboratory,
Animal and Plant Health Agency (APHA), Weybridge (United Kingdom) ( OIE’s
Reference Laboratory )
|
Tests and
results
|
Species
|
Test
|
Test
date
|
Result
|
Cattle
|
immunohistochemical test
|
28/01/2015
|
Positive
|
Cattle
|
western
blot
|
28/01/2015
|
Positive
|
|
Future
Reporting
The event is continuing.
Weekly follow-up reports will be
submitted.
|
Encéphalopathie spongiforme bovine ,Norvège
Information reçue le
29/01/2015 de Dre Kristina Landsverk, Chief Veterinary Officer, Norwegian Food
Safety Authority, Ministry of Agriculture and Food, Brumunddal,
Norvège
Résumé
Type de
rapport
|
Notification
immédiate
|
Date de début de
l’événement
|
16/01/2015
|
Date de pré-confirmation
de l´événement
|
20/01/2015
|
Date du
rapport
|
29/01/2015
|
Date d'envoi à
l'OIE
|
29/01/2015
|
Raison de
notification
|
Apparition pour la
première fois d’une maladie listée par l'OIE
|
Manifestation de la
maladie
|
Infection
sub-clinique
|
Agent
causal
|
Prion (EEB atypique, type
H)
|
Nature du
diagnostic
|
Tests approfondis en
laboratoire (i.e. virologie, microscopie électronique, biologie moléculaire,
immunologie)
|
Cet événement se rapporte
à
|
tout le
pays
|
Nouveaux
foyers
Récapitulatif des
foyers
|
Nombre total de foyers :
1
|
Localisation du foyer
|
- NORD-TRONDELAG ( Verran,
Tua, District office Innherred og Fosen, Region office Trøndelag og Møre og
Romdal )
|
Nombre total d'animaux
atteints
|
Espèce(s)
|
Sensibles
|
Cas
|
Morts
|
Détruits
|
Abattus
|
Bovins
|
27
|
1
|
0
|
1
|
0
|
|
Statistiques sur le
foyer
|
Espèce(s)
|
Taux de morbidité
apparent
|
Taux de mortalité
apparent
|
Taux de fatalité
apparent
|
Proportion d'animaux
sensibles perdus*
|
Bovins
|
3.70%
|
0.00%
|
0.00%
|
3.70%
|
* Soustraits de la
population sensible suite à la mort, à l´abattage et/ou à la destruction;
|
Epidémiologie
Source du/des foyer(s) ou
origine de l´infection
|
|
Autres renseignements
épidémiologiques / Commentaires
|
Situation au 29 janvier
2015 : Le 20 janvier 2015, l'Institut vétérinaire norvégien a informé d’une
suspicion d’EEB chez une vache en Norvège en se basant sur un test initial
effectué sur du matériel du SNC. Une partie de ce matériel a été envoyé au
Laboratoire de référence de l'Union européenne à Weybridge (21 janvier 2015)
pour vérification du diagnostic. La vache atteinte était âgée de 15 ans et était
née en Norvège. La mère avait été importée de Suède. La vache n'a pas montré de
signes cliniques de maladie neurologique avant d'être abattue en raison de son
âge et de lésions (12 janvier 2015). Le test pour l’EEB a été effectué dans le
cadre du programme de surveillance de l’EEB. L'Autorité norvégienne de sécurité
alimentaire (NFSA) a mis en œuvre des restrictions aux déplacements dans
l’élevage et a effectué des enquêtes épidémiologiques. La NFSA a identifié
quatre animaux à risque, conformément à la législation pertinente. Les
déplacements de ces animaux sont également soumis à des restrictions
officielles. Les quatre animaux à risque identifiés seront abattus et éliminés
par incinération conformément à la législation de l'Union européenne. Lors de
l'enquête épidémiologique y compris l’enquête en amont des animaux à risque de
l'exploitation d'origine ainsi que de l’exploitation actuelle ont été identifiés
2 descendants nés dans les deux ans précédant l'incident en plus de 2 bovins
appartenant soit à (1) la cohorte d’animaux nés dans le même troupeau que
l'animal atteint dans les 12 mois précédant ou suivant la date de naissance de
la vache atteinte soit à (2) la cohorte d’animaux qui au cours de la première
année de leur vies ont été élevés avec la vache atteinte au cours de sa première
année de vie. Les déplacements de la descendance née dans les deux années qui
ont précédé l'incident et de la cohorte d’animaux à risque sont soumis à des
restrictions et l’abattage et la destruction de ces animaux seront effectués dès
que possible. La carcasse de la vache atteinte a été complètement détruite. La
NFSA s’assure que la carcasse de la vache a été traitée par stérilisation sous
pression dans une usine de transformation de catégorie 1 et que le matériau
résultant a été envoyé à l'incinération / co-incinération conformément aux
dispositions du règlement sur les sous-produits
animaux.
|
Mesures de
lutte
Mesure de lutte
appliquées
|
- Restriction des
déplacements à l'intérieur du pays
- Dépistage
- Pas de vaccination
- Aucun traitement des
animaux atteints
|
Mesures à
appliquer
|
- Abattage sanitaire
partiel
|
Résultats des tests
de diagnostics
Nom du laboratoire et
type
|
Laboratoire de référence
de l'Union européenne, Agence de la santé animale et végétale (APHA), Weybridge
(Royaume-Uni) ( Laboratoire de référence de l’OIE
)
|
Tests et
résultats
|
Espèce(s)
|
Test
|
Date du
test
|
Résultat
|
Bovins
|
examen
immunohistochimique
|
28/01/2015
|
Positif
|
Bovins
|
western blot
|
28/01/2015
|
Positif
|
|
Nom du laboratoire et
type
|
Institut vétérinaire
norvégien ( Laboratoire national )
|
Tests et
résultats
|
Espèce(s)
|
Test
|
Date du
test
|
Résultat
|
Bovins
|
méthode de dosage
immuno-enzymatique (ELISA)
|
20/01/2015
|
Positif
|
|
Nom du laboratoire et
type
|
Institut vétérinaire
norvégien ( Laboratoire national )
|
Tests et
résultats
|
Espèce(s)
|
Test
|
Date du
test
|
Résultat
|
Bovins
|
western blot
|
20/01/2015
|
Positif
|
|
Rapports
futurs
Cet événement se
poursuit. Des rapports de suivi hebdomadaires devront être
envoyés.
|
Encefalopatía espongiforme bovina ,Noruega
Información recibida
el 29/01/2015 desde Dre Kristina Landsverk, Chief Veterinary Officer, Norwegian
Food Safety Authority, Ministry of Agriculture and Food, Brumunddal,
Noruega
Resumen
Tipo de
informe
|
Notificación
inmediata
|
Fecha del inicio del
evento
|
16/01/2015
|
Fecha de pre-confirmación
del evento
|
20/01/2015
|
Fecha del
informe
|
29/01/2015
|
Fecha de envio del
informe a la OIE
|
29/01/2015
|
Motivo de la
notificación
|
Aparición por primera vez
de una enfermedad de la Lista de la OIE
|
Manifestación de la
enfermedad
|
Infección
sub-clínica
|
Agente
causal
|
Prion (EEB atípica, tipo
H)
|
Naturaleza del
diagnóstico
|
Pruebas de diagnóstico de
laboratorio avanzadas (ej. virología, microscopía electrónica, biología
molecular e inmunología)
|
Este evento
concierne
|
todo el
país
|
Nuevos
focos
Resumen de los
focos
|
Número total de focos:
1
|
Localización del foco
|
- NORD-TRONDELAG ( Verran,
Tua, District office Innherred og Fosen, Region office Trøndelag og Møre og
Romdal )
|
Número total de animales
afectados
|
Especies
|
Susceptibles
|
Casos
|
Muertos
|
Destruidos
|
Sacrificados
|
Bovinos
|
27
|
1
|
0
|
1
|
0
|
|
Estadística del
foco
|
Especies
|
Tasa de morbilidad
aparente
|
Tasa de mortalidad
aparente
|
Tasa de fatalidad
aparente
|
Proporción de animales
susceptibles perdidos*
|
Bovinos
|
3.70%
|
0.00%
|
0.00%
|
3.70%
|
* Descontados de la
población susceptible a raíz de su muerte, destrucción o sacrificio;
|
Epidemiología
Fuente del o de los focos
u origen de la infección
|
- Desconocida o no
concluyente
|
Otros detalles
epidemiológicos / comentarios
|
Situación al 29 de enero
de 2015: El 20 de enero de 2015, el Instituto de veterinaria noruego informó de
una sospecha de EEB en una vaca en Noruega basada en una prueba inicial
realizada con material del SNC. Parte de este material se envió al Laboratorio
de referencia de la Unión Europea en Weybridge (21 de enero de 2015) para
verificar el diagnóstico. La vaca afectada tenía 15 años y nació en Noruega. La
madre fue importada de Suecia. La vaca no mostró signos clínicos de enfermedad
neurológica antes de ser eliminada por su edad avanzada y lesiones (12 de enero
de 2015). La prueba para la EEB fue realizada en el marco del programa de
vigilancia para la EEB. La Autoridad noruega de seguridad alimentaria (NFSA) ha
impuesto restricciones a los desplazamientos en la explotación y ha realizado
las investigaciones epidemiológicas. La NFSA ha identificado cuatro animales de
riesgo, de acuerdo con la legislación pertinente. Los desplazamientos de estos
animales también son sometidos a las restricciones oficiales. Los cuatro
animales de riesgo identificados serán eliminados y destruidos por incineración
de acuerdo con la legislación de la Unión Europea. En la investigación
epidemiológica incluido el rastreo de los animales de riesgo de la explotación
de origen así como de la explotación actual se han identificado 2 descendientes
nacidos en los dos años anteriores al incidente además de 2 bovinos
pertenecientes a (1) la cohorte de animales nacidos en el mismo rebaño que el
animal afectado en los 12 meses anteriores o posteriores a la fecha de
nacimiento de la vaca afectada o a (2) la cohorte de animales que en cualquier
momento durante el primer año de vida fueron criados con la vaca afectada
durante su primer año de vida. Los desplazamientos de la descendencia nacida en
los dos años anteriores al incidente y de la cohorte de animales de riesgo están
sometidos a restricciones y la matanza y la destrucción de estos animales se
llevará a cabo lo antes posible. La canal de la vaca afectada ha sido
completamente destruida. La NFSA se asegura de que la canal de la vaca ha sido
procesada por esterilización a presión en una planta de transformación de la
categoría 1 y de que el material resultante ha sido enviado para su
incineración/co-incineración de conformidad con el reglamento relativo a los
subproductos de origen
animal.
|
Medidas de
Control
Medidas
implementadas
|
- Restricción de los
movimientos en el interior del país
- Tamizaje
- Vacunación: no
- Ningún tratamiento de los
animales afectados
|
Medidas para
implementar
|
- Sacrificio sanitario
parcial
|
Resultados de las
pruebas diagnósticas
Nombre y tipo de
laboratorio
|
Laboratorio de referencia
de la Unión Europea, Agencia de sanidad animal y vegetal (APHA), Weybridge
(Reino Unido) ( Laboratorio de referencia de la OIE
)
|
Pruebas y
resultados
|
Especies
|
Prueba
|
Fecha de la
prueba
|
Resultados
|
Bovinos
|
examen
inmunohistoquímico
|
28/01/2015
|
Positivo
|
Bovinos
|
western blot
|
28/01/2015
|
Positivo
|
|
Nombre y tipo de
laboratorio
|
Instituto de veterinaria
noruego ( Laboratorio nacional )
|
Pruebas y
resultados
|
Especies
|
Prueba
|
Fecha de la
prueba
|
Resultados
|
Bovinos
|
prueba inmunoenzimática
(ELISA)
|
20/01/2015
|
Positivo
|
Bovinos
|
western blot
|
20/01/2015
|
Positivo
|
|
Informes
futuros
El episodio continúa.
Informes de seguimiento semanales serán
enviados
|
end...TSS
Thursday, January 29, 2015
Atypical H-TYPE BSE Case Confirmed in Norway
atypical Scrapie Nor98
Atypical/Nor98 scrapie was first identified in 1998 in Norway (Benestad et
al., 2003) and it is now considered as a worldwide disease of small ruminants
and currently represents a significant part of the detected TSE cases in Europe
(where its prevalence was estimated to range between 5 to 8 positive small
ruminants per 10,000 tested per year), as well as in other countries like
Canada, USA and New Zealand (Andreoletti et al., 2011; Benestad, Arsac,
Goldmann, & Noremark, 2008; Fediaevsky et al., 2008). In Atypical/Nor98
scrapie the sheep genetic susceptibility is significantly different from what is
observed in classical TSE forms, with homozygous and heterozygous ARR allele
carriers being susceptible to the disease (Arsac et al., 2007; Luhken et al.,
2007; Luhken, Buschmann, Groschup, & Erhardt, 2004; Moreno et al., 2007;
Saunders, Cawthraw, Mountjoy, Hope, & Windl, 2006), which has been the basis
of a large scale genetic selection policy aiming at the control of TSE diseases
by increasing the frequency of the ARR allele in general population and
restocking affected flocks with ARR animals. In contrast to classical scrapie,
atypical scrapie is usually detected in older animals (mean age of five to six
years) (Benestad et al., 2008) and prnp genotypes that include alleles
A136H154Q171 and/or A136F141R154Q171, are more at risk (Moum et al., 2005).
Moreover, atypical scrapie does not seem to cluster in positive flocks
supporting the hypothesis that atypical scrapie, in contrast to classical
scrapie, is not a contagious disease (Fediaevsky et al., 2010). As such, since
2002, 28 European countries (25 EU member states plus Iceland, Norway and
Switzerland) have been involved in scrapie surveillance in accordance with EC
regulation (Regulation (EC) 999, 2001) for at least one year (Fediaevsky et al.,
2010), but specific provisions for control of atypical scrapie were only first
introduced in July 2007 (Regulation (EC) 727, 2007). However, we must be aware
that the capacity of Atypical/Nor98 scrapie agent to cross species barrier, is
insufficiently documented (Andreoletti et al., 2011). In fact, data from
transmission of an Atypical/Nor98 scrapie isolate into transgenic mice
over-expressing the porcine PrPC (Espinosa et al., 2009), underline the urgent
need for further investigations on the potential capacity of Atypical/Nor98
scrapie to propagate in species, other than small ruminants. In Portugal,
atypical/Nor98 scrapie is the predominant form of TSE in small ruminants (Orge
et al., 2010). prnp genotyping of Portuguese atypical scrapie cases revealed a
variety of genotypes rarely linked with classical scrapie, which included
ARR/AFRQ, ARR/ARR,
148
ARQ/AFRQ and AFRQ/AFRQ (Orge et al., 2004; Orge et al., 2010),
contradicting studies that reported the AHQ allele as being most frequently
(then AFRQ allele) associated with atypical scrapie (Baylis & McIntyre,
2004; Benestad et al., 2008; Fediaevsky, Morignat, Ducrot, & Calavas, 2009;
McIntyre, del Rio Vilas, & Gubbins, 2008).
Atypical/Nor98 cases are identified in older animals in comparison to
classical scrapie [6], [40]. The lack of PrPSc detection in peripheral tissues
of reported cases suggested that Atypical/Nor98 scrapie agent could be
restricted to CNS. This is supportive of the hypothesis that Atypical/Nor98
scrapie could be a spontaneous disorder of PrP folding and metabolism occurring
in aged animals without external cause [6], [38].
However, this hypothesis is questioned by the evidence reported here that a
negative PrPSc testing result could be observed in animals harbouring high
infectious titre in their brain and that the infectious agent can be present in
peripheral tissues of Atypical/Nor98 scrapie incubating sheep. TSE are
considered to be transmitted following oral exposure; initial uptake is followed
by a peripheral replication phase which is generally associated with a
dissemination of the agent in the lymphoid system and the deposition of large
amounts of PrPSc. This peripheral replication phase is later followed by the
entry of the infectious agent into the CNS through the autonomic nervous system
[25], [27], [35], [36]. However, in several situations, like BSE in cattle [41],
[42], [43] or classical scrapie in ARR heterozygote sheep [44], [45], the
involvement of secondary lymphoid system is marginal, which does not preclude
central neuro-invasion through the autonomic nervous system [46]. It could be
proposed that Atypical Scrapie/Nor98 might occur following oral exposure to a
TSE agent, which would spread marginally in lymphoid tissues before
neuro-invasion. The slow propagation of Atypical Scrapie/Nor98 in its host (long
incubation period) and the impaired detection sensitivity level of PrPSc based
assays would explain the apparent old age of detected cases.
The results presented here are insufficient to rule out the hypothesis of a
spontaneous/non contagious disorder or to consider this alternative scenario as
a plausible hypothesis. Indeed, the presence of Atypical scrapie/Nor98
infectivity in peripheral tissues could be alternatively due to the centripetal
spreading of the agent from the CNS. However, our findings point out that
further clarifications on Atypical/Nor98 scrapie agent biology are needed before
accepting that this TSE is a spontaneous and non contagious disorder of small
ruminants. Assessing Atypical/Nor98 scrapie transmissibility through oral route
in natural host and presence in placenta and in colostrum/milk (which are
considered as major sources for TSE transmission between small ruminants) [28],
[32] will provide crucial data.
The presence of infectivity in peripheral tissues that enter the food chain
clearly indicates that the risk of dietary exposure to Atypical/Nor98 scrapie
cannot be disregarded. However, according to our observations, in comparison to
the brain, the infectious titres in the peripheral tissues were five log10 lower
in Atypical/Nor98 scrapie than in classical scrapie. Therefore, the reduction of
the relative exposure risk following SRM removal (CNS, head, spleen and ileum)
is probably significantly higher in Atypical/Nor98 scrapie cases than in
classical scrapie cases. However, considering the currently estimated prevalence
of Atypical/Nor98 scrapie in healthy slaughtered EU population [10], it is
probable that atypical scrapie infectivity enters in the food chain despite the
prevention measures in force.
Finally, the capacity of Atypical/Nor98 scrapie agent (and more generally
of small ruminants TSE agents) to cross species barrier that naturally limits
the transmission risk is insufficiently documented. Recently, the transmission
of an Atypical/Nor98 scrapie isolate was reported into transgenic mice
over-expressing the porcine PrP [47]. Such results cannot directly be
extrapolated to natural exposure conditions and natural hosts. However, they
underline the urgent need for further investigations on the potential capacity
of Atypical/Nor98 scrapie to propagate in other species than small ruminants.
Thursday, September 22, 2016
NORWAY DETECTS 5TH CASE OF CHRONIC WASTING DISEASE CWD TSE PRION
Skrantesjuke
Saturday, September 03, 2016
NORWAY Regulation concerning temporary measures to reduce the spread of
Chronic Wasting Disease (CWD) as 4th case of skrantesjuke confirmed in Sogn og
Fjordane
Wednesday, August 31, 2016
*** NORWAY CONFIRMS 4TH CASE OF CHRONIC WASTING DISEASE CWD TSE PRION IN
SECOND CARIBOU
Wednesday, August 31, 2016
NORWAY CONFIRMS 4TH CASE OF CHRONIC WASTING DISEASE CWD TSE PRION IN SECOND
CARIBOU
Tuesday, August 02, 2016
Chronic wasting disease of deer – is the battle to keep Europe free already
lost?
*** Chronic Wasting Disease (CWD) in a moose from Selbu in Sør-Trøndelag
Norway ***
Thursday, July 07, 2016
Norway reports a third case Chronic Wasting Disease CWD TSE Prion in 2nd
Norwegian moose
14/06/2016 - Norway reports a third case
Saturday, July 16, 2016
Chronic wasting Disease in Deer (CWD or Spongiform Encephalopathy) The
British Deer Society 07/04/2016
Red Deer Ataxia or Chronic Wasting Disease CWD TSE PRION?
could this have been cwd in the UK back in 1970’S ???
SEE FULL TEXT ;
Tuesday, April 12, 2016
The first detection of Chronic Wasting Disease (CWD) in Europe free-ranging
reindeer from the Nordfjella population in South-Norway.
The Norwegian Veterinary Institute (NVI, 2016) has reported a case of prion
disease Cervid Spongiform Encephalopathy detected in free ranging wild reindeer
(Rangifer tarandus tarandus)
Department for Environment, Food and Rural Affairs
P03.141
Aspects of the Cerebellar Neuropathology in Nor98
Gavier-Widén, D1; Benestad, SL2; Ottander, L1; Westergren, E1 1National
Veterinary Insitute, Sweden; 2National Veterinary Institute,
Norway Nor98 is a prion disease of old sheep and goats. This atypical form
of scrapie was first described in Norway in 1998. Several features of Nor98 were
shown to be different from classical scrapie including the distribution of
disease associated prion protein (PrPd) accumulation in the brain. The
cerebellum is generally the most affected brain area in Nor98. The study here
presented aimed at adding information on the neuropathology in the cerebellum of
Nor98 naturally affected sheep of various genotypes in Sweden and Norway. A
panel of histochemical and immunohistochemical (IHC) stainings such as IHC for
PrPd, synaptophysin, glial fibrillary acidic protein, amyloid, and cell markers
for phagocytic cells were conducted. The type of histological lesions and tissue
reactions were evaluated. The types of PrPd deposition were characterized. The
cerebellar cortex was regularly affected, even though there was a variation in
the severity of the lesions from case to case. Neuropil vacuolation was more
marked in the molecular layer, but affected also the granular cell layer. There
was a loss of granule cells. Punctate deposition of PrPd was characteristic. It
was morphologically and in distribution identical with that of synaptophysin,
suggesting that PrPd accumulates in the synaptic structures. PrPd was also
observed in the granule cell layer and in the white matter. The pathology
features of Nor98 in the cerebellum of the affected sheep showed similarities
with those of sporadic Creutzfeldt-Jakob disease in humans.
***The pathology features of Nor98 in the cerebellum of the affected sheep
showed similarities with those of sporadic Creutzfeldt-Jakob disease in
humans.
PR-26
NOR98 SHOWS MOLECULAR FEATURES REMINISCENT OF GSS
R. Nonno1, E. Esposito1, G. Vaccari1, E. Bandino2, M. Conte1, B.
Chiappini1, S. Marcon1, M. Di Bari1, S.L. Benestad3, U. Agrimi1 1 Istituto
Superiore di Sanità, Department of Food Safety and Veterinary Public Health,
Rome, Italy (romolo.nonno@iss.it); 2 Istituto Zooprofilattico della Sardegna,
Sassari, Italy; 3 National Veterinary Institute, Department of Pathology, Oslo,
Norway
Molecular variants of PrPSc are being increasingly investigated in sheep
scrapie and are generally referred to as "atypical" scrapie, as opposed to
"classical scrapie". Among the atypical group, Nor98 seems to be the best
identified. We studied the molecular properties of Italian and Norwegian Nor98
samples by WB analysis of brain homogenates, either untreated, digested with
different concentrations of proteinase K, or subjected to enzymatic
deglycosylation. The identity of PrP fragments was inferred by means of
antibodies spanning the full PrP sequence. We found that undigested brain
homogenates contain a Nor98-specific PrP fragment migrating at 11 kDa (PrP11),
truncated at both the C-terminus and the N-terminus, and not N-glycosylated.
After mild PK digestion, Nor98 displayed full-length PrP (FL-PrP) and
N-glycosylated C-terminal fragments (CTF), along with increased levels of PrP11.
Proteinase K digestion curves (0,006-6,4 mg/ml) showed that FL-PrP and CTF are
mainly digested above 0,01 mg/ml, while PrP11 is not entirely digested even at
the highest concentrations, similarly to PrP27-30 associated with classical
scrapie. Above 0,2 mg/ml PK, most Nor98 samples showed only PrP11 and a fragment
of 17 kDa with the same properties of PrP11, that was tentatively identified as
a dimer of PrP11. Detergent solubility studies showed that PrP11 is insoluble in
2% sodium laurylsorcosine and is mainly produced from detergentsoluble,
full-length PrPSc. Furthermore, among Italian scrapie isolates, we found that a
sample with molecular and pathological properties consistent with Nor98 showed
plaque-like deposits of PrPSc in the thalamus when the brain was analysed by
PrPSc immunohistochemistry. Taken together, our results show that the
distinctive pathological feature of Nor98 is a PrP fragment spanning amino acids
~ 90-155. This fragment is produced by successive N-terminal and C-terminal
cleavages from a full-length and largely detergent-soluble PrPSc, is produced in
vivo and is extremely resistant to PK digestion.
*** Intriguingly, these conclusions suggest that some pathological features
of Nor98 are reminiscent of Gerstmann-Sträussler-Scheinker disease.
119
A newly identified type of scrapie agent can naturally infect sheep with
resistant PrP genotypes
Annick Le Dur*,?, Vincent Béringue*,?, Olivier Andréoletti?, Fabienne
Reine*, Thanh Lan Laï*, Thierry Baron§, Bjørn Bratberg¶, Jean-Luc Vilotte?,
Pierre Sarradin**, Sylvie L. Benestad¶, and Hubert Laude*,?? +Author
Affiliations
*Virologie Immunologie Moléculaires and ?Génétique Biochimique et
Cytogénétique, Institut National de la Recherche Agronomique, 78350
Jouy-en-Josas, France; ?Unité Mixte de Recherche, Institut National de la
Recherche Agronomique-Ecole Nationale Vétérinaire de Toulouse, Interactions Hôte
Agent Pathogène, 31066 Toulouse, France; §Agence Française de Sécurité Sanitaire
des Aliments, Unité Agents Transmissibles Non Conventionnels, 69364 Lyon,
France; **Pathologie Infectieuse et Immunologie, Institut National de la
Recherche Agronomique, 37380 Nouzilly, France; and ¶Department of Pathology,
National Veterinary Institute, 0033 Oslo, Norway
***Edited by Stanley B. Prusiner, University of California, San Francisco,
CA (received for review March 21, 2005)
Abstract Scrapie in small ruminants belongs to transmissible spongiform
encephalopathies (TSEs), or prion diseases, a family of fatal neurodegenerative
disorders that affect humans and animals and can transmit within and between
species by ingestion or inoculation. Conversion of the host-encoded prion
protein (PrP), normal cellular PrP (PrPc), into a misfolded form, abnormal PrP
(PrPSc), plays a key role in TSE transmission and pathogenesis. The intensified
surveillance of scrapie in the European Union, together with the improvement of
PrPSc detection techniques, has led to the discovery of a growing number of
so-called atypical scrapie cases. These include clinical Nor98 cases first
identified in Norwegian sheep on the basis of unusual pathological and PrPSc
molecular features and "cases" that produced discordant responses in the rapid
tests currently applied to the large-scale random screening of slaughtered or
fallen animals. Worryingly, a substantial proportion of such cases involved
sheep with PrP genotypes known until now to confer natural resistance to
conventional scrapie. Here we report that both Nor98 and discordant cases,
including three sheep homozygous for the resistant PrPARR allele (A136R154R171),
efficiently transmitted the disease to transgenic mice expressing ovine PrP, and
that they shared unique biological and biochemical features upon propagation in
mice. *** These observations support the view that a truly infectious TSE agent,
unrecognized until recently, infects sheep and goat flocks and may have
important implications in terms of scrapie control and public health.
Monday, December 1, 2008
When Atypical Scrapie cross species barriers
Authors
Andreoletti O., Herva M. H., Cassard H., Espinosa J. C., Lacroux C., Simon
S., Padilla D., Benestad S. L., Lantier F., Schelcher F., Grassi J., Torres, J.
M., UMR INRA ENVT 1225, Ecole Nationale Veterinaire de Toulouse.France;
ICISA-INlA, Madrid, Spain; CEA, IBiTec-5, DSV, CEA/Saclay, Gif sur Yvette cedex,
France; National Veterinary Institute, Postboks 750 Sentrum, 0106 Oslo, Norway,
INRA IASP, Centre INRA de Tours, 3738O Nouzilly, France.
Content
Atypical scrapie is a TSE occurring in small ruminants and harbouring
peculiar clinical, epidemiological and biochemical properties. Currently this
form of disease is identified in a large number of countries. In this study we
report the transmission of an atypical scrapie isolate through different species
barriers as modeled by transgenic mice (Tg) expressing different species PRP
sequence.
The donor isolate was collected in 1995 in a French commercial sheep flock.
inoculation into AHQ/AHQ sheep induced a disease which had all
neuro-pathological and biochemical characteristics of atypical scrapie.
Transmitted into Transgenic mice expressing either ovine or PrPc, the isolate
retained all the described characteristics of atypical scrapie.
Surprisingly the TSE agent characteristics were dramatically different
v/hen passaged into Tg bovine mice. The recovered TSE agent had biological and
biochemical characteristics similar to those of atypical BSE L in the same mouse
model. Moreover, whereas no other TSE agent than BSE were shown to transmit into
Tg porcine mice, atypical scrapie was able to develop into this model, albeit
with low attack rate on first passage.
Furthermore, after adaptation in the porcine mouse model this prion showed
similar biological and biochemical characteristics than BSE adapted to this
porcine mouse model. Altogether these data indicate.
(i) the unsuspected potential abilities of atypical scrapie to cross
species barriers
(ii) the possible capacity of this agent to acquire new characteristics
when crossing species barrier
These findings raise some interrogation on the concept of TSE strain and on
the origin of the diversity of the TSE agents and could have consequences on
field TSE control measures.
RESEARCH
Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 17, No. 5, May 2011
Experimental Oral Transmission of Atypical Scrapie to Sheep
Marion M. Simmons, S. Jo Moore,1 Timm Konold, Lisa Thurston, Linda A.
Terry, Leigh Thorne, Richard Lockey, Chris Vickery, Stephen A.C. Hawkins,
Melanie J. Chaplin, and John Spiropoulos
To investigate the possibility of oral transmission of atypical scrapie in
sheep and determine the distribution of infectivity in the animals’ peripheral
tissues, we challenged neonatal lambs orally with atypical scrapie; they were
then killed at 12 or 24 months. Screening test results were negative for
disease-specifi c prion protein in all but 2 recipients; they had positive
results for examination of brain, but negative for peripheral tissues.
Infectivity of brain, distal ileum, and spleen from all animals was assessed in
mouse bioassays; positive results were obtained from tissues that had negative
results on screening. These fi ndings demonstrate that atypical scrapie can be
transmitted orally and indicate that it has the potential for natural
transmission and iatrogenic spread through animal feed. Detection of infectivity
in tissues negative by current surveillance methods indicates that diagnostic
sensitivity is suboptimal for atypical scrapie, and potentially infectious
material may be able to pass into the human food chain.
SNIP...
Although we do not have epidemiologic evidence that supports the effi cient
spread of disease in the fi eld, these data imply that disease is potentially
transmissible under fi eld situations and that spread through animal feed may be
possible if the current feed restrictions were to be relaxed. Additionally,
almost no data are available on the potential for atypical scrapie to transmit
to other food animal species, certainly by the oral route. However, work with
transgenic mice has demonstrated the potential susceptibility of pigs, with the
disturbing fi nding that the biochemical properties of the resulting PrPSc have
changed on transmission (40). The implications of this observation for
subsequent transmission and host target range are currently unknown.
How reassuring is this absence of detectable PrPSc from a public health
perspective? The bioassays performed in this study are not titrations, so the
infectious load of the positive gut tissues cannot be quantifi ed, although
infectivity has been shown unequivocally. No experimental data are currently
available on the zoonotic potential of atypical scrapie, either through
experimental challenge of humanized mice or any meaningful epidemiologic
correlation with human forms of TSE. However, the detection of infectivity in
the distal ileum of animals as young as 12 months, in which all the tissues
tested were negative for PrPSc by the currently available screening and confi
rmatory diagnostic tests, indicates that the diagnostic sensitivity of current
surveillance methods is suboptimal for detecting atypical scrapie and that
potentially infectious material may be able to pass into the human food chain
undetected.
Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 17, No. 5, May 2011
Monday, April 25, 2011
Experimental Oral Transmission of Atypical Scrapie to Sheep
Volume 17, Number 5-May 2011
Friday, February 11, 2011
Atypical/Nor98 Scrapie Infectivity in Sheep Peripheral Tissues
*** Grant Agreement number: 222887 ***
*** Project acronym: PRIORITY ***
*** Project title: Protecting the food chain from prions: shaping European
priorities through basic and applied research Funding ***
Scheme: Large-scale integrating project Period covered: from Oct. 1, 2009
to Sept. 30, 2014
Name of the scientific representative of the project's co-ordinator1, Title
and Organisation: Jesús R. Requena, Ph.D., Associate Professor, Department of
medicine, University of Santiago de Compostela, Spàin. Tel: 34-881815464 Fax:
34-881815403 E-mail: jesus.requena@usc.es
Project website¡Error! Marcador no definido. address: www.prionpriority.eu
PRIORITY, PROJECT FINAL REPORT
*** 14) Concluding that atypical scrapie can transmit to Humans and that
its strain properties change as it transmits between species ***
snip...
Block D: Prion epidemiology
Studies on atypical scrapie were identified as a key element of this block,
given the potential risk associated to this agent. We studied the permeability
of Human, bovine and porcine species barriers to atypical scrapie agent
transmission. Experiments in transgenic mice expressing bovine, porcine or human
PrPC suggest that this TSE agent has the intrinsic ability to propagate across
these species barriers including the Human one. Upon species barrier passage the
biological properties and phenotype of atypical scrapie seem to be altered.
Further experiments are currently ongoing (in the framework of this project but
also in other projects) in order to: (i) characterize the properties of the
prion that emerged from the propagation of atypical scrapie in tg Hu; (ii) to
confirm that the phenomena we observed are also true for atypical scrapie
isolates other than the ones we have studied.
In parallel, studies in shep have concluded that:
*** Atypical scrapie can be transmitted by both oral and intracerebral
route in sheep with various PRP genotypes
*** Low but consistent amount of infectivity accumulates in peripheral
tissue (mammary gland, lymph nodes, placenta, skeletal muscles, nerves) of sheep
incubating atypical scrapie.
*** The combination of data from all our studies leads us to conclude that:
*** Atypical scrapie passage through species barriers can lead to the
emergence of various prions including classical BSE (following propagation in
porcine PRP transgenic mice).
*** Atypical scrapie can propagate, with a low efficacy, in human PrP
expressing mice. This suggests the existence of a zoonotic potential for this
TSE agent.
snip...
We advance our main conclusions and recommendations, in particular as they
might affect public policy, including a detailed elaboration of the evidence
that led to them. Our main recommendations are:
a. The issue of re-introducing ruminant protein into the food-chain The
opinion of the members of Priority is that sustaining an absolute feed ban for
ruminant protein to ruminants is the essential requirement, especially since the
impact of non-classical forms of scrapie in sheep and goats is not fully
understood and cannot be fully estimated. Therefore, the consortium strongly
recommends prohibiting re-introduction of processed ruminant protein into the
food-chain. Arguments in support of this opinion are:
• the large (and still uncharacterized) diversity of prion agents that
circulate in animal populations;
• the uncertainties related to prion epidemiology in animal
populations;
• the unknown efficacy of industrial processes applied to reduce
microbiological risk during processed animal protein (PAP) production on most
prion agents; • the intrinsic capacity of prions to cross interspecies
transmission barriers; • the lack of sensitive methodology for identifying cross
contamination in food.
• the evolution of natural food chains in nature (i.e. who eats whom or
what) has generated an efficient barrier preventing, to some extent, novel prion
epidemies and that this naturally evolved ecology should be respected.
The consortium is also hesitant to introduce processed ruminant proteins
into fish food considering the paucity of data on prion infections in fishes and
sea animals including those of mammalian origin, and the risk of establishing an
environmental contamination of the oceans that cannot be controlled.
b. Atypical prion agents and surveillance
Atypical prion agents (see below) will probably continue to represent the
dominant form of prion diseases in the near future, particularly in Europe.
*** Atypical L-type BSE has clear zoonotic potential, as demonstrated in
experimental models.
*** Similarly, there are now some data that seem to indicate that the
atypical scrapie agent can cross various species barriers.
*** Moreover, the current EU policy for eradicating scrapie (genetic
selection in affected flocks) is ineffective for preventing atypical scrapie.
*** The recent identification of cell-to-cell propagation and the
protein-encoded strain properties of human neurodegenerative diseases such as
Alzheimer's disease and Parkinson's disease, suggest that they bear the
potential to be transmissible even if not with the same efficiency as CJD. More
epidemiological data from large cohorts are necessary to reach any conclusion on
the impact of their transmissibility on public health. Re-evaluations of safety
precautions may become necessary depending on the outcome of these studies. In
that context it would appear valuable
• to develop knowledge related to the pathogenesis and inter-individual
transmission of atypical prion agents in ruminants (both intra- and
inter-species)
• to improve the sensitivity of detection assays that are applied in the
field towards this type of agent
• to maintain a robust surveillance of both animal and human populations
c. The need for extended research on prions
Intensified searching for a molecular determinants of the species barrier
is recommended, since this barrier is a key for many important policy areas -
risk assessment, proportional policies, the need for screening of human products
and food. In this respect, prion strain structural language also remains an
important issue for public health for the foreseeable future. Understanding the
structural basis for strains and the basis for adaptation of a strain to a new
host will require continued fundamental research. Prions maintain a complex
two-way relationship with the host cell and fundamental research is needed on
mechanisms for their transmission, replication and cause of nervous system
dysfunction and death.
Early detection of prion infection, ideally at preclinical stage, also
remains crucial for development of effective treatment strategies in humans
affected by the disease.
Position of the Priority consortium
Nearly 30 years ago, the appearance in the UK of Bovine Spongiform
Encephalopathy (BSE) quickly brought the previously obscure “prion diseases” to
the spotlight. The ensuing health and food crises that spread throughout Europe
had devastating consequences. In the UK alone, there were more than 36,000 farms
directly affected by BSE and the transmission of BSE prions to humans via the
food chain has caused over 200 people in Europe to die from variant
Creutzfeldt-Jakob disease (vCJD) (
http://www.cjd.ed.ac.uk
Origins of prion epidemies
Classical BSE now appears to be under control, with 18 EU Member States
having achieved the World Organisation for Animal Health (Office International
Epizooties) „negligible risk‟ status (May 2014;
http://www.oie.int/en/animal-health-in-the-world/official-disease-status/bse/list-of-bse-risk-status/),
and the remaining MS assessed as „controlled‟ risk. Of note, research, including
EU-funded research, has played a key role in this success: while the origin of
the infection was never defined, the principle driver of the epidemic was
identified as prions in Meat and Bone Meal (MBM). Tests based on prion
protein-specific antibodies were developed, allowing detection of infected
animals, and a better understanding of disease pathogenesis and the distribution
of infectivity in edible tissues; experimental investigation of transmission
barriers between different species allowed a rational estimation of risks, etc.
All of this led to the implementation of rational and effective policies, such
as the MBM ban to protect the animal feed chain, and the Specified Risk Material
(SRM) regulations to protect the human food chain.
In spite of this progress, prions are still a threat. Epidemiological
re-assessment indicates that the ∼10 year incubation period separating the peaks
of the BSE and the vCJD epidemics is probably too short. In addition, results
from a large number of human tonsil and appendix analyses in the UK suggest that
there may be a high number of asymptomatic individuals who are positive for the
disease-associated conformer prion protein PrPSc. While vCJD is the only form of
human prion disease that has been consistently demonstrated to have
lymphoreticular involvement, there has been no systematic investigation of
lymphoid tissue in cases with other prion diseases.
The human prion problem
The clinical cases of vCJD identified to date have all shared a common PrP
genotype (M129M), although one pre-clinical case was confirmed as an M129V
heterozygote, and it has been mooted that perhaps only the M129M proportion of
the population is susceptible. However, in the UK appendix study, PrP
accumulation was described in samples representing every codon 129 genotype,
raising the possibility that genotype does not confer resistance but instead
modulates incubation period. Apart from the two UK studies, the lymphoid tissues
of non-CJD patients have not been examined for the presence of PrPSc, so, these
cases may not solely represent pre-clinical vCJD, but also other forms of prion
disease.
Recent experiments in highly susceptible mouse models indicate the presence
of infectivity in blood or blood components at late disease stages in sporadic
CJD. The significance of this experimental finding for humans has to be explored
in more detail and, at the present time, there is no evidence for the
transmission of prions via blood in sporadic CJD. However a likely scenario is
that all those with signs of infection or abnormal PrP accumulation in
peripheral tissue could have infective blood, posing the risk for transmission
via blood products, which has been clearly demonstrated in experimental models,
and confirmed in several cases of vCJD in man. Altogether, these data clearly
demonstrate the potential risk of a second wave of vCJD, particularly when the
number people identified with lymphoid accumulation of PrPSc (16/32,411) gives a
prevalence estimate in the UK of 493 per million, much higher than the number of
clinical cases seen to date.
The animal prion problem
An increasing number of reports on cases of “atypical” BSE in cattle
throughout the EU and beyond may lead to a new epidemic, particularly since we
still do not understand all factors determining the species barrier. Ovine
scrapie is another concern, because it could mask ovine BSE, presumably
transmissible to humans. Scrapie is endemic and not likely to be eradicated
soon, although current control measures are effective at greatly reducing
disease incidence. Atypical forms, which may be spontaneous, are not affected by
these control measures and these forms of disease will persist in the global
animal population. The low prevalence of these disease forms makes effective
surveillance very challenging. However, there is a clear risk attendant on
ignoring these cases without an understanding of their possible zoonotic
potential, particularly when most forms of human disease have no established
aetiology. In summary, atypical cases of BSE and scrapie presently clearly
outnumber classical cases in cattle and sheep in all member states.
We will highlight the state-of-the-art knowledge and point out scientific
challenges and the major questions for research. Strategic objectives and
priorities in Europe in the future for research that aims to control, eliminate
or eradicate the threat posed by prions to our food and health are also
indicated.
The Priority project has focused on 4 themes, namely the structure,
function, conversion and toxicity of prions; detection of prions; mechanisms of
prion transmission and spreading and epidemiology of prion diseases. This paper
summarizes the opinions/positions reached within these themes at the end of the
project.
WS-01: Prion diseases in animals and zoonotic potential 2016
Prion. 10:S15-S21. 2016 ISSN: 1933-6896 printl 1933-690X online
Taylor & Francis
Prion 2016 Animal Prion Disease Workshop Abstracts
WS-01: Prion diseases in animals and zoonotic potential
Juan Maria Torres a, Olivier Andreoletti b, J uan-Carlos Espinosa a.
Vincent Beringue c. Patricia Aguilar a,
Natalia Fernandez-Borges a. and Alba Marin-Moreno a
"Centro de Investigacion en Sanidad Animal ( CISA-INIA ). Valdeolmos,
Madrid. Spain; b UMR INRA -ENVT 1225 Interactions Holes Agents Pathogenes. ENVT.
Toulouse. France: "UR892. Virologie lmmunologie MolécuIaires, Jouy-en-Josas.
France
Dietary exposure to bovine spongiform encephalopathy (BSE) contaminated
bovine tissues is considered as the origin of variant Creutzfeldt Jakob (vCJD)
disease in human. To date, BSE agent is the only recognized zoonotic prion.
Despite the variety of Transmissible Spongiform Encephalopathy (TSE) agents that
have been circulating for centuries in farmed ruminants there is no apparent
epidemiological link between exposure to ruminant products and the occurrence of
other form of TSE in human like sporadic Creutzfeldt Jakob Disease (sCJD).
However, the zoonotic potential of the diversity of circulating TSE agents has
never been systematically assessed. The major issue in experimental assessment
of TSEs zoonotic potential lies in the modeling of the ‘species barrier‘, the
biological phenomenon that limits TSE agents’ propagation from a species to
another. In the last decade, mice genetically engineered to express normal forms
of the human prion protein has proved essential in studying human prions
pathogenesis and modeling the capacity of TSEs to cross the human species
barrier.
To assess the zoonotic potential of prions circulating in farmed ruminants,
we study their transmission ability in transgenic mice expressing human PrPC
(HuPrP-Tg). Two lines of mice expressing different forms of the human PrPC
(129Met or 129Val) are used to determine the role of the Met129Val dimorphism in
susceptibility/resistance to the different agents.
These transmission experiments confirm the ability of BSE prions to
propagate in 129M- HuPrP-Tg mice and demonstrate that Met129 homozygotes may be
susceptible to BSE in sheep or goat to a greater degree than the BSE agent in
cattle and that these agents can convey molecular properties and
neuropathological indistinguishable from vCJD. However homozygous 129V mice are
resistant to all tested BSE derived prions independently of the originating
species suggesting a higher transmission barrier for 129V-PrP variant.
Transmission data also revealed that several scrapie prions propagate in
HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the
efficiency of transmission at primary passage was low, subsequent passages
resulted in a highly virulent prion disease in both Met129 and Val129 mice.
Transmission of the different scrapie isolates in these mice leads to the
emergence of prion strain phenotypes that showed similar characteristics to
those displayed by MM1 or VV2 sCJD prion. These results demonstrate that scrapie
prions have a zoonotic potential and raise new questions about the possible link
between animal and human prions.
P.86: Estimating the risk of transmission of BSE and scrapie to ruminants
and humans by protein misfolding cyclic amplification
Morikazu Imamura, Naoko Tabeta, Yoshifumi Iwamaru, and Yuichi Murayama
National Institute of Animal Health; Tsukuba, Japan
To assess the risk of the transmission of ruminant prions to ruminants and
humans at the molecular level, we investigated the ability of abnormal prion
protein (PrPSc) of typical and atypical BSEs (L-type and H-type) and typical
scrapie to convert normal prion protein (PrPC) from bovine, ovine, and human to
proteinase K-resistant PrPSc-like form (PrPres) using serial protein misfolding
cyclic amplification (PMCA).
Six rounds of serial PMCA was performed using 10% brain homogenates from
transgenic mice expressing bovine, ovine or human PrPC in combination with PrPSc
seed from typical and atypical BSE- or typical scrapie-infected brain
homogenates from native host species. In the conventional PMCA, the conversion
of PrPC to PrPres was observed only when the species of PrPC source and PrPSc
seed matched. However, in the PMCA with supplements (digitonin, synthetic polyA
and heparin), both bovine and ovine PrPC were converted by PrPSc from all tested
prion strains. On the other hand, human PrPC was converted by PrPSc from typical
and H-type BSE in this PMCA condition.
*** Although these results were not compatible with the previous reports
describing the lack of transmissibility of H-type BSE to ovine and human
transgenic mice, our findings suggest that possible transmission risk of H-type
BSE to sheep and human. Bioassay will be required to determine whether the PMCA
products are infectious to these animals. ***
O.08: H-type bovine spongiform encephalopathy associated with E211K prion
protein polymorphism: Clinical and pathologic features in wild-type and E211K
cattle following intracranial inoculation
S Jo Moore, M Heather West Greenlee, Jodi Smith, Eric Nicholson, Cathy
Vrentas, and Justin Greenlee United States Department of Agriculture; Ames, IA
USA
In 2006 an H-type bovine spongiform encephalopathy (BSE) case was reported
in an animal with an unusual polymorphism (E211K) in the prion protein gene.
Although the prevalence of this polymorphism is low, cattle carrying the K211
allele are predisposed to rapid onset of H-type BSE when exposed. The purpose of
this study was to investigate the phenotype of this BSE strain in wild-type
(E211E) and E211K heterozygous cattle. One calf carrying the wild-type allele
and one E211K calf were inoculated intracranially with H-type BSE brain
homogenate from the US 2006 case that also carried one K211 allelle. In
addition, one wild-type calf and one E211K calf were inoculated intracranially
with brain homogenate from a US 2003 classical BSE case. All animals succumbed
to clinical disease. Survival times for E211K H-type BSE inoculated catttle (10
and 18 months) were shorter than the classical BSE inoculated cattle (both 26
months). Significant changes in retinal function were observed in H-type BSE
challenged cattle only. Animals challenged with the same inoculum showed similar
severity and neuroanatomical distribution of vacuolation and disease-associated
prion protein deposition in the brain, though differences in neuropathology were
observed between E211K H-type BSE and classical BSE inoculated animals. Western
blot results for brain tissue from challenged animals were consistent with the
inoculum strains.
This study demonstrates that the phenotype of E211K H-type BSE remains
stable when transmitted to cattle without the E211K polymorphism, and exhibits a
number of features that differ from classical BSE in both wild-type and E211K
cattle.
O.05: Transmission of prions to primates after extended silent incubation
periods: Implications for BSE and scrapie risk assessment in human
populations
Emmanuel Comoy, Jacqueline Mikol, Val erie Durand, Sophie Luccantoni,
Evelyne Correia, Nathalie Lescoutra, Capucine Dehen, and Jean-Philippe Deslys
Atomic Energy Commission; Fontenay-aux-Roses, France
Prion diseases (PD) are the unique neurodegenerative proteinopathies
reputed to be transmissible under field conditions since decades. The
transmission of Bovine Spongiform Encephalopathy (BSE) to humans evidenced that
an animal PD might be zoonotic under appropriate conditions. Contrarily, in the
absence of obvious (epidemiological or experimental) elements supporting a
transmission or genetic predispositions, PD, like the other proteinopathies, are
reputed to occur spontaneously (atpical animal prion strains, sporadic CJD
summing 80% of human prion cases).
Non-human primate models provided the first evidences supporting the
transmissibiity of human prion strains and the zoonotic potential of BSE. Among
them, cynomolgus macaques brought major information for BSE risk assessment for
human health (Chen, 2014), according to their phylogenetic proximity to humans
and extended lifetime. We used this model to assess the zoonotic potential of
other animal PD from bovine, ovine and cervid origins even after very long
silent incubation periods.
*** We recently observed the direct transmission of a natural classical
scrapie isolate to macaque after a 10-year silent incubation period, with
features similar to some reported for human cases of sporadic CJD, albeit
requiring fourfold longe incubation than BSE. Scrapie, as recently evoked in
humanized mice (Cassard, 2014), is the third potentially zoonotic PD (with BSE
and L-type BSE), thus questioning the origin of human sporadic cases.
*** We will present an updated panorama of our different transmission
studies and discuss the implications of such extended incubation periods on risk
assessment of animal PD for human health.
P.73: Oral challenge of goats with atypical scrapie
Silvia Colussi1, Maria Mazza1, Francesca Martucci1, Simone Peletto1,
Cristiano Corona1, Marina Gallo1, Cristina Bona1, Romolo Nonno2, Michele Di
Bari2, Claudia D’Agostino2, Nicola Martinelli3, Guerino Lombardi3, and Pier
Luigi Acutis1 1Istituto Zooprofilattico Sperimentale del Piemonte; Liguria e
Valle d’Aosta; Turin, Italy; 2Istituto Superiore di Sanit a; Rome, Italy;
3Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna;
Brescia, Italy
Atypical scrapie transmission has been demonstrated in sheep by
intracerebral and oral route (Simmons et al., Andreoletti et al., 2011) but data
about goats are not available yet. In 2006 we orally challenged four goats, five
months old, with genotype R/H and R/R at codon 154. Animals died starting from
24 to 77 months p.i. without clinical signs. They all resulted negative for
scrapie in CNS and peripheral tissues using Western blot and
immunohistochemistry. Nevertheless these goats could still represent carriers.
This hypothesis was investigated through bioassay in tg338 mice, a sensitive
animal model for atypical scrapie infectivity. By end-point dilution titration,
the starting inoculum contained 106.8 ID50/g. In contrast, all tissues from
challenged goats were negative by bioassay. These negative results could be
explained with the low infectivity of the starting inoculum, which could have
been unable to induce Prion 2015 Poster Abstracts S49 disease or infectivity
within our period of observation. However the challenge conditions could have
been a bias too: as the matter of the fact, while the oral challenge of
classical scrapie is still effective in sheep 6–10 months old (Andreoletti et
al., 2011), Simmons et al. (2011) demonstrated a very short efficacy period for
atypical scrapie (24 hours after birth), hypothesizing that natural transmission
could occur mainly via milk. Our work suggests that this could be true also for
goats and it should be taken into account in oral challenges. However a low
susceptibility of goats to atypical scrapie transmission via oral route cannot
be excluded.
>>> These results suggest that (i) at the level of protein-protein
interactions, CWD adapts to a new species more readily than does BSE and (ii)
the barrier preventing transmission of CWD to humans may be less robust than
estimated.
Accepted manuscript posted online 8 July 2015.
Insights into Chronic Wasting Disease and Bovine Spongiform Encephalopathy
Species Barriers by Use of Real-Time Conversion
Kristen A. Davenport, Davin M. Henderson, Jifeng Bian, Glenn C. Telling,
Candace K. Mathiason and Edward A. Hoover Prion Research Center, Department of
Microbiology, Immunology and Pathology, College of Veterinary Medicine and
Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA K.
L. Beemon, Editor + Author Affiliations
Next Section ABSTRACT The propensity for transspecies prion transmission
is related to the structural characteristics of the enciphering and new host
PrP, although the exact mechanism remains incompletely understood. The effects
of variability in prion protein on cross-species prion transmission have been
studied with animal bioassays, but the influence of prion protein structure
versus that of host cofactors (e.g., cellular constituents, trafficking, and
innate immune interactions) remains difficult to dissect. To isolate the effects
of protein-protein interactions on transspecies conversion, we used recombinant
PrPC and real-time quaking-induced conversion (RT-QuIC) and compared chronic
wasting disease (CWD) and classical bovine spongiform encephalopathy (cBSE)
prions. To assess the impact of transmission to a new species, we studied feline
CWD (fCWD) and feline BSE (i.e., feline spongiform encephalopathy [FSE]). We
cross-seeded fCWD and FSE into each species' full-length, recombinant PrPC and
measured the time required for conversion to the amyloid (PrPRes) form, which we
describe here as the rate of amyloid conversion. These studies revealed the
following: (i) CWD and BSE seeded their homologous species' PrP best; (ii) fCWD
was a more efficient seed for feline rPrP than for white-tailed deer rPrP; (iii)
conversely, FSE more efficiently converted bovine than feline rPrP; (iv) and
CWD, fCWD, BSE, and FSE all converted human rPrP, although not as efficiently as
homologous sCJD prions. These results suggest that (i) at the level of
protein-protein interactions, CWD adapts to a new species more readily than does
BSE and (ii) the barrier preventing transmission of CWD to humans may be less
robust than estimated.
IMPORTANCE We demonstrate that bovine spongiform encephalopathy prions
maintain their transspecies conversion characteristics upon passage to cats but
that chronic wasting disease prions adapt to the cat and are distinguishable
from the original prion. Additionally, we showed that chronic wasting disease
prions are effective at seeding the conversion of normal human prion protein to
an amyloid conformation, perhaps the first step in crossing the species barrier.
snip...
Enciphering characteristics of cBSE and cBSE-derived prions are conserved
after transspecies transmission.cBSE and CWD are prion diseases that have been
naturally passaged in their respective species (cattle and deer), whereas feline
spongiform encephalopathy (FSE) and feline chronic wasting disease (fCWD) are
first-passage infections in a new host species (cat). To investigate the
biochemical properties of cBSE and CWD after transspecies transmission to
felines, we compared the amyloidogenicity of fCWD and FSE in the original host
and in feline substrate. We found fCWD to be a more efficient seed for its new
(feline) host, suggesting that adaptation to the new host had occurred (Fig.
4A). In contrast, FSE remained a more efficient seed for its enciphering
(bovine) host, despite its derivation from feline brain PrPC (Fig. 4B). Thereby,
these cross-species seeding experiments in RT-QuIC indicated that the
characteristics of cBSE were maintained upon passage to a new species whereas
CWD had adapted to its new host. These findings in felids suggest that cBSE may
retain its ability to cross species barriers even after transmission to a new
host species and that CWD may change substantially upon transspecies
transmission.
Human rPrPC can be converted by bovine, feline, and cervid prions.The
threat of zoonotic transmission of prion disease is evident and well documented,
yet such transmission is uncommonly observed and incompletely understood. We
thereby explored the propensity of heterologous prions to convert human rPrP. In
these human rPrPC experiments, we used sporadic CJD brain as a positive control
and normal bovine, white-tailed deer, and feline brain as negative controls.
sCJD, as expected, seeded human rPrPC most efficiently, so all other seeds were
normalized to the rate of conversion of sCJD. We found human rPrPC to be a
competent substrate in RT-QuIC for CWD, fCWD, cBSE, and FSE (Fig. 5A).
Interestingly, CWD and fCWD converted human rPrPC more efficiently than did cBSE
and FSE. These data suggest that at the level of PrPC-PrP seed interaction, CWD
has the ability to template the conversion of human rPrPC to ThT-positive
amyloid. In order to assess whether CWD was faster than cBSE due to an increased
concentration of prion seed, we performed Western blotting on the seed inocula.
Western blots indicated that the cBSE sample had a higher concentration of
PrPRes than the CWD sample, indicating that CWD was not a better seed than cBSE
due to PrPRes content (Fig. 5B). Finally, we assessed the behavior of 8 CWD
field isolates, brain samples from white-tailed deer infected naturally and
verified to be positive using full-length white-tailed deer RT-QuIC (Fig. 5C).
All 8 of these isolates converted human rPrPC, confirming that our observations
were not due to the use of experimentally CWD (Fig. 5D). In all, these
experiments suggest that the CWD prions naturally circulating in the western
United States have the capacity to convert human rPrPC in this assay of
protein-protein interactions.
snip...
In summary, real-time conversion demonstrates that CWD and BSE prions
differ in their enciphering rigidity and plasticity across species barriers. One
illustration is the conservation versus adaptation of enciphering prion
characteristics upon passage to cats. These experiments also demonstrate that
human rPrP can be converted to amyloid by both cBSE and CWD prions. These data
point to the importance of deciphering the mechanisms by which prions infect and
adapt to a new species and of prompt continued vigilance regarding indirect
pathways that may facilitate transspecies prion transmission.
Monday, September 19, 2016
Evidence of scrapie transmission to sheep via goat milk
Research Project: TRANSMISSION, DIFFERENTIATION, AND PATHOBIOLOGY OF
TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES Location: Virus and Prion Research
2015 Annual Report
1a. Objectives (from AD-416): 1. Investigate the pathobiology of atypical
transmissible spongiform encephalopathies (TSEs) in natural hosts. A.
Investigate the pathobiology of atypical scrapie. B. Investigate the
pathobiology of atypical bovine spongiform encephalopathy (BSE). 2. Investigate
the horizontal transmission of TSEs. A. Assess the horizontal transmission of
sheep scrapie in the absence of lambing. B. Determine routes of transmission in
chronic wasting disease (CWD) infected premises. C. Assess oral transmission of
CWD in reindeer. 3. Investigate determinants of CWD persistence. A. Determine
CWD host range using natural routes of transmission. B. Investigate the
pathobiology of CWD.
1b. Approach (from AD-416): The studies will focus on three animal
transmissible spongiform encephalopathy (TSE) agents found in the United States:
bovine spongiform encephalopathy (BSE); scrapie of sheep and goats; and chronic
wasting disease (CWD) of deer, elk, and moose. The research will address sites
of accumulation, routes of infection, environmental persistence, and ante mortem
diagnostics with an emphasis on controlled conditions and natural routes of
infection. Techniques used will include clinical exams, histopathology,
immunohistochemistry and biochemical analysis of proteins. The enhanced
knowledge gained from this work will help mitigate the potential for
unrecognized epidemic expansions of these diseases in populations of animals
that could either directly or indirectly affect food animals.
3. Progress Report: Research efforts directed toward meeting objective 1 of
our project plan include work in previous years starting with the inoculation of
animals for studies designed to address the pathobiology of atypical scrapie,
atypical bovine spongiform encephalopathy (BSE), as well as a genetic version of
BSE. Post-mortem examination of the animals inoculated with atypical scrapie has
been initiated and laboratory analysis of the tissues is ongoing. Atypical BSE
animals have developed disease and evaluation of the samples is currently
underway. Animals inoculated with a genetic version of BSE have developed
disease with a manuscript reporting these results was published (2012), and
additional laboratory comparisons of genetic BSE to atypical and classical BSE
are ongoing. In addition, we have investigated the possibility that atypical
scrapie was present earlier than previously detected in the national flock by
analyzing archived field isolates using methods that were unavailable at the
time of original diagnosis. Sample quality was sufficiently degraded that modern
methods, beyond those applied to the tissues at the time the tissues were
archived, were not suitable for evaluation. In research pertaining to objective
2, "Investigate the horizontal transmission of TSEs", we have initiated a study
to determine if cohousing non-lambing scrapie inoculated sheep is sufficient to
transmit scrapie to neonatal lambs. At this time, scrapie free ewes have lambed
in the presence of scrapie inoculated animals and the lambs are cohoused with
these inoculated animals.
4. Accomplishments 1. Changes in retinal function in cattle can be used to
identify different types of bovine spongiform encephalopathy (BSE). BSE belongs
to a group of fatal, transmissible protein misfolding diseases known as
transmissible spongiform encephalopathies (TSEs). Like other protein misfolding
diseases including Parkinson's disease and Alzheimer's disease, TSEs are
generally not diagnosed until the onset of disease after the appearance of
unequivocal clinical signs. As such, identification of the earliest clinical
signs of disease may facilitate diagnosis. The retina is the most accessible
part of the central nervous system. ARS scientist in Ames IA described
antemortem changes in retinal function and thickness that are detectable in BSE
inoculated animals up to 11 months prior to the appearance of any other signs of
clinical disease. Differences in the severity of these clinical signs reflect
the amount of PrPSc accumulation in the retina and the resulting inflammatory
response of the tissue. These results are the earliest reported clinical signs
associated with TSE infection and provide a basis for understanding the
pathology and evaluating therapeutic interventions. Further, this work shows
that High-type BSE and classical BSE can be differentiated by eye examination
alone, the first time BSE strains have been differentiable in a live animal.
2. Sheep genetics influences the susceptibility of sheep to scrapie. Sheep
scrapie is a transmissible spongiform encephalopathy that can be transmitted
between affected animals resulting in significant economic losses in affected
flocks. The prion protein gene (PRNP) profoundly influences the susceptibility
of sheep to the scrapie agent and the tissue levels and distribution of PrPSc in
affected sheep. In this study, sheep of 3 different prion genetic types (denoted
VRQ/VRQ, VRQ/ARR and ARQ/ARR) were inoculated and subsequently euthanized upon
onset of disease. Disease aspects were uniform across genotypes and consistent
with manifestations of classical scrapie. Mean survival time differences were
associated with the genetic type such that VRQ/VRQ sheep survived 18 months,
whereas VRQ/ARR and ARQ/ARR sheep survived 60 and 56 months, respectively.
Microscopic evaluation revealed similar accumulations in central nervous system
tissues regardless of host genetic type. PrPSc in lymphoid tissue was
consistently abundant in VRQ/VRQ, present but confined to tonsil or
retropharyngeal lymph node in 4/5 VRQ/ARR, and totally absent in ARQ/ARR sheep.
The results of this study demonstrate the susceptibility of sheep with the
ARQ/ARR genotype to scrapie by the intracranial inoculation route with PrPSc
accumulation in CNS tissues, but prolonged incubation times and lack of PrPSc in
lymphoid tissue. These results are important for science based policy with
regard to testing of sheep for scrapie where some live animal testing is
conducted using lymphoid tissues which would not detect scrapie in some specific
genetic types which could limit the national scrapie eradication program.
Review Publications Greenlee J.J. 2014. The prion diseases of animals. In:
McManus, L.M., Mitchell, R.N., editors. Pathobiology of Human Disease. San
Diego: Elsevier. p. 1124-1133. Greenlee, J.J., Kunkle, R.A., Richt, J.A.,
Nicholson, E.M., Hamir, A.N. 2014. Lack of prion accumulation in lymphoid
tissues of PRNP ARQ/ARR sheep intracranially inoculated with the agent of
scrapie. PLoS One. 9(9):e108029. Greenlee, J.J., West Greenlee, M.,H. 2015. The
transmissible spongiform encephalopathies of livestock. ILAR Journal.
56(1):7-25. Munoz-Gutierrez, J.F., Schneider, D.A., Baszler, T.V., Dinkel, K.D.,
Greenlee, J.J., Nicholson, E.M., Stanton, J.J. 2015. hTERT-immortalized ovine
microglia propagate natural scrapie isolates. Virus Research. 198:35-43.
Nicholson, E.M. 2015. Detection of the disease-associated form of the prion
protein in biological samples. Bioanalysis. 7(2):253-261. West Greenlee, M.H.,
Smith, J.D., Platt, E.M., Juarez, J.R., Timms, L.L, Greenlee, J.J. 2015. Changes
in retinal function and morphology are early clinical signs of disease in cattle
with bovine spongiform encephalopathy. PLoS ONE. 10(3):e0119431. Comoy, E.E.,
Mikol, J., Luccantoni-Freire, S., Correia, E., Lescoutra-Etchegaray, N., Durand,
V., Dehen, C., Andreoletti, O., Casalone, C., Richt, J.A., Greenlee, J.J.,
Baron, T., Benestad, S., Brown, P., Deslys, J. 2015. Transmission of scrapie
prions to primate after an extended silent incubation period. Scientific
Reports. 5:11573.
***Our study demonstrates susceptibility of adult cattle to oral
transmission of classical BSE. ***
***our findings suggest that possible transmission risk of H-type BSE to
sheep and human. ***
P.86: Estimating the risk of transmission of BSE and scrapie to ruminants
and humans by protein misfolding cyclic amplification
Morikazu Imamura, Naoko Tabeta, Yoshifumi Iwamaru, and Yuichi Murayama
National Institute of Animal Health; Tsukuba, Japan
To assess the risk of the transmission of ruminant prions to ruminants and
humans at the molecular level, we investigated the ability of abnormal prion
protein (PrPSc) of typical and atypical BSEs (L-type and H-type) and typical
scrapie to convert normal prion protein (PrPC) from bovine, ovine, and human to
proteinase K-resistant PrPSc-like form (PrPres) using serial protein misfolding
cyclic amplification (PMCA).
Six rounds of serial PMCA was performed using 10% brain homogenates from
transgenic mice expressing bovine, ovine or human PrPC in combination with PrPSc
seed from typical and atypical BSE- or typical scrapie-infected brain
homogenates from native host species. In the conventional PMCA, the conversion
of PrPC to PrPres was observed only when the species of PrPC source and PrPSc
seed matched. However, in the PMCA with supplements (digitonin, synthetic polyA
and heparin), both bovine and ovine PrPC were converted by PrPSc from all tested
prion strains. On the other hand, human PrPC was converted by PrPSc from typical
and H-type BSE in this PMCA condition.
Although these results were not compatible with the previous reports
describing the lack of transmissibility of H-type BSE to ovine and human
transgenic mice, ***our findings suggest that possible transmission risk of
H-type BSE to sheep and human. Bioassay will be required to determine whether
the PMCA products are infectious to these animals.
================
***Our study demonstrates susceptibility of adult cattle to oral
transmission of classical BSE. ***
P.86: Estimating the risk of transmission of BSE and scrapie to ruminants
and humans by protein misfolding cyclic amplification
Morikazu Imamura, Naoko Tabeta, Yoshifumi Iwamaru, and Yuichi Murayama
National Institute of Animal Health; Tsukuba, Japan
To assess the risk of the transmission of ruminant prions to ruminants and
humans at the molecular level, we investigated the ability of abnormal prion
protein (PrPSc) of typical and atypical BSEs (L-type and H-type) and typical
scrapie to convert normal prion protein (PrPC) from bovine, ovine, and human to
proteinase K-resistant PrPSc-like form (PrPres) using serial protein misfolding
cyclic amplification (PMCA).
Six rounds of serial PMCA was performed using 10% brain homogenates from
transgenic mice expressing bovine, ovine or human PrPC in combination with PrPSc
seed from typical and atypical BSE- or typical scrapie-infected brain
homogenates from native host species. In the conventional PMCA, the conversion
of PrPC to PrPres was observed only when the species of PrPC source and PrPSc
seed matched. However, in the PMCA with supplements (digitonin, synthetic polyA
and heparin), both bovine and ovine PrPC were converted by PrPSc from all tested
prion strains. On the other hand, human PrPC was converted by PrPSc from typical
and H-type BSE in this PMCA condition.
Although these results were not compatible with the previous reports
describing the lack of transmissibility of H-type BSE to ovine and human
transgenic mice, ***our findings suggest that possible transmission risk of
H-type BSE to sheep and human. Bioassay will be required to determine whether
the PMCA products are infectious to these animals.
===============
Saturday, May 30, 2015
PRION 2015 ORAL AND POSTER CONGRESSIONAL ABSTRACTS
PRION 2015 CONFERENCE FT. COLLINS CWD RISK FACTORS TO HUMANS
*** LATE-BREAKING ABSTRACTS PRION 2015 CONFERENCE ***
O18
Zoonotic Potential of CWD Prions
Liuting Qing1, Ignazio Cali1,2, Jue Yuan1, Shenghai Huang3, Diane Kofskey1,
Pierluigi Gambetti1, Wenquan Zou1, Qingzhong Kong1 1Case Western Reserve
University, Cleveland, Ohio, USA, 2Second University of Naples, Naples, Italy,
3Encore Health Resources, Houston, Texas, USA
*** These results indicate that the CWD prion has the potential to infect
human CNS and peripheral lymphoid tissues and that there might be asymptomatic
human carriers of CWD infection.
==================
***These results indicate that the CWD prion has the potential to infect
human CNS and peripheral lymphoid tissues and that there might be asymptomatic
human carriers of CWD infection.***
==================
P.105: RT-QuIC models trans-species prion transmission
Kristen Davenport, Davin Henderson, Candace Mathiason, and Edward Hoover
Prion Research Center; Colorado State University; Fort Collins, CO USA
Conversely, FSE maintained sufficient BSE characteristics to more
efficiently convert bovine rPrP than feline rPrP. Additionally, human rPrP was
competent for conversion by CWD and fCWD.
***This insinuates that, at the level of protein:protein interactions, the
barrier preventing transmission of CWD to humans is less robust than previously
estimated.
================
***This insinuates that, at the level of protein:protein interactions, the
barrier preventing transmission of CWD to humans is less robust than previously
estimated.***
================
***P.170: Potential detection of oral transmission of H type atypical BSE
in cattle using in vitro conversion
Sandor Dudas, John G Gray, Renee Clark, and Stefanie Czub Canadian Food
Inspection Agency; Lethbridge, AB Canada
Keywords: Atypical BSE, oral transmission, RT-QuIC
The detection of bovine spongiform encephalopathy (BSE) has had a
significant negative impact on the cattle industry worldwide. In response,
governments took actions to prevent transmission and additional threats to
animal health and food safety. While these measures seem to be effective for
controlling classical BSE, the more recently discovered atypical BSE has
presented a new challenge. To generate data for risk assessment and control
measures, we have challenged cattle orally with atypical BSE to determine
transmissibility and mis-folded prion (PrPSc) tissue distribution. Upon
presentation of clinical symptoms, animals were euthanized and tested for
characteristic histopathological changes as well as PrPSc deposition.
The H-type challenged animal displayed vacuolation exclusively in rostral
brain areas but the L-type challenged animal showed no evidence thereof. To our
surprise, neither of the animals euthanized, which were displaying clinical
signs indicative of BSE, showed conclusive mis-folded prion accumulation in the
brain or gut using standard molecular or immunohistochemical assays. To confirm
presence or absence of prion infectivity, we employed an optimized real-time
quaking induced conversion (RT-QuIC) assay developed at the Rocky Mountain
Laboratory, Hamilton, USA.
Detection of PrPSc was unsuccessful for brain samples tests from the orally
inoculated L type animal using the RT-QuIC. It is possible that these negative
results were related to the tissue sampling locations or that type specific
optimization is needed to detect PrPSc in this animal. We were however able to
consistently detect the presence of mis-folded prions in the brain of the H-type
inoculated animal. Considering the negative and inconclusive results with other
PrPSc detection methods, positive results using the optimized RT-QuIC suggests
the method is extremely sensitive for H-type BSE detection. This may be evidence
of the first successful oral transmission of H type atypical BSE in cattle and
additional investigation of samples from these animals are ongoing.
P.169: PrPSc distribution in brain areas of a natural German H-type BSE
case
Anne Balkema-Buschmann, Grit Priemer, Markus Keller, and Martin H Groschup
Friedrich Loeffler Institut, Institute for Novel and Emerging Infectious
Diseases; Greifswald, Insel Riems, Germany
Keywords: BSE H-type, brain, muscle
Ten years after the initial description of atypical BSE cases of the H-type
and L-type, the distribution of PrPSc in different brain areas and peripheral
tissues of natural cases of these BSE forms is still not fully understood.
Intracerebral challenge experiments have been performed with both atypical BSE
forms in cattle, and the distribution of the abnormal prion protein and
infectivity has been analysed in a variety of tissues, confirming the general
restriction to the central nervous system as it was already generally
acknowledged for classical BSE, but showing a slightly earlier and stronger
involvement of the peripheral nervous system and the skeletal muscle.
www.landesbioscience.com Prion 105
However, data from cattle orally challenged with atypical BSE, which might
mimic the natural situation, are not yet available. Unfortunately, for most
natural cases of atypical BSE, only the obex region is available for further
analysis. The PrPSc distribution in the brains of natural L-type BSE cases in
Italy has been described in some detail, but comparably few such data are yet
available for natural H-type cases. Here we describe the analysis of different
brain areas and muscle samples of a natural H-type BSE case diagnosed in Germany
in 2014, and compare these data with those obtained from the respective samples
collected from cattle challenged intracerebrally with H-type BSE.
*** P.159: Transgenic mice overexpressing rabbit prion protein are
susceptible to BSE, BASE and scrapie prion strains but resistant to CWD and
atypical scrapie
Natalia Fernández-Borges,1 Enric Vidal,2 Belén Pintado,4 Hasier Eraña,1
Montserrat Ordóñez,3 Mercedes Márquez,5 Francesca Chianini,6 Dolors Fondevila,5
Manuel A Sánchez-Martín,7 Olivier Andréoletti,8 Mark P Dagleish,6 Martí
Pumarola,5 and Joaquín Castilla1,3 1CIC bioGUNE; Parque tecnológico de Bizkaia;
Derio; Bizkaia, Spain; 2Centre de Recerca en Sanitat Animal (CReSA); UAB-IR TA,
Campus de la Universitat Autònoma de Barcelona; Bellaterra; Barcelona,
Catalonia, Spain; 3IKERBASQUE; Basque Foundation for Science; Bilbao, Bizkaia,
Spain; 4Centro Nacional de Biotecnología (CNB), Campus de Cantoblanco;
Cantoblanco; Madrid, Spain; 5Department of Animal Medicine and Surgery;
Veterinary faculty; Universitat Autònoma de Barcelona (UAB); Bellaterra
(Cerdanyola del Vallès); Barcelona, Catalonia, Spain; 6Moredun Research
Institute; Bush Loan, Penicuik, Scotland, UK; 7Unidad de Generación de OMGs.
S.E.A. Department of Medicine; University of Salamanca; Salamanca, Spain; 8Ecole
Nationale du Veterinaire; Service de Pathologie du Bétail; Toulouse,
France
Interspecies transmission of prions is a well established phenomenon, both
experimentally and in field conditions. Upon passage through new hosts prion
strains have proven their capacity to change their properties. It is, in fact, a
source of strain diversity which needs to be considered when assessing the
potential risks associated with consumption of prion contaminated protein
sources.
Rabbits were considered for decades a prion resistant species until proven
recently otherwise. To determine the extent of rabbit susceptibility to prions
and to assess their effects on the passage of different prion strains through
this species, a transgenic mouse model overexpressing rabbit PrPC was developed
(TgRab). Intracerebral challenges with prion strains originating from a variety
of species including field isolates (SSBP1 scrapie, Nor98-like scrapie, BSE,
BASE and CWD), experimental murine strains (ME7 and RML), experimentally
obtained strains (sheepBSE) and strains obtained by in vitro crossing of the
species barrier using saPMCA (BSE-RabPrPres, SSBP1-RabPrPres and CWD-RabPrPres)
have been performed.
Interestingly, on first passage, TgRab were susceptible to the majority of
prions tested with the exception of SSBP1 scrapie, CWD and Nor98 scrapie.
Furthermore TgRab were capable of propagating strain-specific features such as
differences in incubation periods, brain lesion and PrPd deposition profiles and
PK resistant western blotting band patterns. Our results confirm previous
studies shattering the myth that rabbits are resistant to prion infection and
this should be taken into account when choosing protein sources to feed rabbits.
P.168: Evolution of the biological properties of L-BSE after passage in
sheep with susceptible and resistant PrP genotypes
Michele A Di Bari, Umberto Agrimi, Claudia D’Agostino, Geraldina Riccardi,
Stefano Marcon, Elena Esposito, Paolo Frassanito, Flavio Torriani, Shimon
Simson, and Romolo Nonno Istituto Superiore di Sanità (ISS) Department of
Veterinary Public Health and Food Safety; Rome, Italy
Background. Cattle L-BSE was efficiently transmitted to sheep with
susceptible (QQ171) and resistant (QR171) PrP genotypes. 1 Notably, the PrPSc
signature of L-BSE was preserved in QQ171 sheep but not in QR171 sheep.2
Notwithstanding, bioassay in transgenic mice expressing bovine or ovine (ARQ)
PrPC showed that L-BSE strain was preserved in both, QQ171 and QR171
sheep-passaged L-BSE.3
Here we studied the biological properties of sheep-passaged L-BSE by
bioassay in bank voles and transgenic mice expressing the ovine VRQ PrP (tg338),
both characterized by a comparatively low susceptibility to cattle L-BSE.
Material and Methods. Voles and tg338 mice were intracerebrally inoculated
with cattle L-BSE and sheep-passaged (QQ171 and QR171) L-BSE isolates. Survival
time, lesion profiles, Pet-blot and WB analysis were used for strain typing.
Results. Cattle L-BSE transmitted quite inefficiently to tg338 mice, with
survival time >400 days post-infection (d.p.i.), while sheep-passaged inocula
were much more efficient and all gave terminal disease by ~140 d.p.i. However,
after sub-passage all inocula converged to a survival time of ~145 d.p.i.. and
showed overlapping pathological phenotypes.
In voles, cattle L-BSE transmitted with very long survival times (~800
d.p.i.) and was accompanied by an upward shift of the PrPSc type. Again, all
sheep-passaged L-BSE isolates transmitted much more efficiently, with similar
survival times of ~360 d.p.i.. Upon second passage, three different strains were
isolated in vole, characterized by distinct pathological phenotypes. This
divergence is epitomized by the different survival times of vole-adapted L-BSE
strains, which were ~400 d.p.i. for cattle L-BSE, ~130 d.p.i. for QQ171-passaged
L-BSE and ~225 d.p.i. for QR171-passaged L-BSE.
Conclusions. These findings, along with previously published data,3 show
that the original L-BSE strain was recovered after passage in sheep when
bioassay was performed in animal models expressing bovine or ovine PrPC. In
contrast, strain changes were observed in both, QQ171- and QR171-passaged L-BSE
by bioassay in vole, a species with divergent PrP sequence compared to
ruminants. Importantly, QQ171- and QR171-passaged L-BSE were characterised by
different PrPSc types and, accordingly, showed different biological properties
when transmitted to voles, but not when transmitted to other animal models.
Overall, our work support the hypothesis that prion isolates are likely
composed of multiple prion components, emphasizes the role of host PrP
polymorphisms on strain selection and mutation, and highlights the risk for new
potentially zoonotic strains that could emerge from prion evolution in animal
reservoirs.
P.172: BSE exposure risk from bovine intestine and mesentery
Fulvio Barizzone,1 Herbert Budka,2 Christine Fast,3 John N Griffin,4
Giuseppe Ru,5 Pietro Stella1 and Olivier Andréoletti6 1European Food Safety
Authority; Parma, Italy; 2Institute of Neuropathology; University Hospital
Zurich; Zurich, Switzerland; 3Friedrich-Loeffler-Institut; Institute of Novel
and Emerging Infectious Diseases; Isle of Riems, Germany; 4Department of
Agriculture, Food and the Marine; Backweston, Celbridge, Co. Kildare, Ireland;
5Istituto Zooprofilattico Sperimentale del Piemonte; Liguria e Valle d’Aosta;
Biostatistics Epidemiology and Analysis of Risk (BEAR) unit; Turin, Italy; 6UMR
Interactions Hôtes Agents Pathogènes; Ecole Nationale Vétérinaire INR A; ENVT;
Toulouse, France
Keywords: Bovine Spongiform Encephalopathy (BSE), cattle, intestine,
mesentery, specified risk material (SRM), quantitative risk assessment
(QRA)
Bovine intestines and mesenteries in the European Union (EU) are considered
among the tissues potentially containing the highest level of BSE infectivity
and have to be removed from the food and feed chain. A quantitative assessment
of the BSE infectious load potentially entering the food and feed chain yearly
in the European Union (EU) was developed. The evolution of the BSE infectious
titre and of the weight of the structures accumulating infectivity was
considered. The number of BSE infected cattle entering undetected in the food
and feed chain yearly was estimated. A model (TSEi) was developed to estimates
the evolution of the BSE infectious load in animals and the total yearly
infectious load that could enter the food and feed chain. In a BSE infected
bovine, the distribution of infectivity in intestines and mesentery varies with
the age. Up to 36 months of age the infectivity is mainly associated (on average
more than 90%) with the last 4 metres of small intestine and the caecum, over 36
and under 60 months of age, there is an inter-individual variability, from 60
months of age the infectivity is mainly associated (on average more than 90%)
with the mesenteric nerves and the celiac and mesenteric ganglion complex. The
total amount of infectivity peaks, about 15 BoID50, in animals younger than 18
months, it declines to 8-9 BoID50 (24–48 months of age) and it drops to 0.7
BoID50 in animals older than 60 months. The ileocaecal plate is the most
infectious part of the intestine and it can be used to estimate the potential
maximum level of exposure for an individual consumer.
In the EU, between 2007 and 2012, the yearly amount of BSE infectivity
associated with intestine and mesentery from animals entering the food and feed
chain was reduced by a factor of 10 (from about 23,000 to about 2,000 BoID50).
However, the maximum level of exposure to the BSE agent from intestine
remained stable (on average about 1.5-1.6 BoID50 per meter).
In case of re-emergence of BSE in the EU there would be an increase of the
potential maximum level of exposure to BSE from intestine. According to the TSEi
model the removal of the last four metres of the small intestine and of the
caecum from the food and feed chain would result in a major reduction of the BSE
exposure risk associated with intestine and mesentery in cattle.
P.131: Transmission of sheep-bovine spongiform encephalopathy in pigs
Carlos Hedman,1 Belén Marín,1 Fabian Corbière,3 Hicham Filali,1 Francisco
Vázquez, José Luis Pitarch,1 William Jirón,1 Rodrigo S Hernandez,1 Bernardino
Moreno,1 Martí Pumarola,2 Olivier Andréoletti,3 Juan José Badiola,1 and Rosa
Bolea1 1University of Zaragoza; Zaragoza, Spain; 2University of Barcelona;
Barcelona, Spain; 3Institut National de la Recherche (INR A); Toulouse,
France
Introduction. The transmissible spongiform encephalopathies (TSE) don´t
occur in swine in natural conditions. However, the bovine spongiform
encephalopathy (BSE) agent, inoculated by 3 simultaneous routes in pigs, is able
to reproduce a neurological disease in these animals. On the other hand, the BSE
agent after passage in sheep under experimental conditions (sheep- BSE) exhibits
altered pathobiologic properties. This new agent is able to cross the cattle-pig
transmission barrier more efficiently than BSE. The potential propagation of TSE
in animals from the human food chain, including pigs, needs to be assessed
regarding the risk for human infection by animals other than TSE-infected
ruminants. The aim of this work was to determine the susceptibility of pigs to
the Sheep-BSE agent and describe the pathological findings and PrPSc deposition
in different tissues.
Material and Methods. Seven minipigs were challenged intracerebrally with
sheep-BSE agent. Clinical observation and postmortem histopathology,
immunohistochemistry (antibody 2G11) and Western blotting were performed on
central nervous system (CNS), peripheral nervous system (PNS) and other
tissues.
Results. One pig was culled in an early incubation stage, and remaining six
were culled at the presence of clinical sings. Pigs developed a clinical disease
with locomotor disorders in an average time of 23 months post inoculation,
showing clinical findings in most of them earlier than those described in the
BSE in pigs experimental infection. TSE wasn´t confirmed in the preclinical pig.
In clinical pigs, the entire cerebral cortex showed severe neuropil vacuolation,
extensive and severe vacuolar changes affecting the thalamus, hippocampus and
cerebellum. PrPSc was found in CNS of all clinical pigs (6/6). Intracellular
(intraneuronal and intraglial) and neuropil-associated PrPSc deposition was
consistently observed in the brainstem, thalamus, and deeper layers of the
cerebral cortex. Also, PrPSc was observed in PNS, mainly in the myenteric plexus
and also in nerves belonging to the skeleton muscle. Moreover, the glycosylation
profile showed a 3 band pattern with a predominant monoglycosylated band in
positive pig samples.
This features concern on the potential risk of utilization of meat and
bound meal of small ruminants in feeding pigs.
P.177: Elements modulating the prion species barrier and its passage
consequences
Juan-Carlos Espinosa,1 Patricia Aguilar-Calvo,1 Ana Villa-Diaz,1 Olivier
Andréoletti,2 and Juan María Torres1 1Centro de Investigación en Sanidad Animal
(CISA-INI A); Valdeolmos, Madrid, Spain; 2UMR INR A-ENVT 1225; Interactions Hôte
Agent Pathogène; École Nationale Vétérinaire de Toulouse; Toulouse, France
The phenotypic features of Transmissible Spongiform Encephalopathy (TSE)
strains may be modified during passage across a species barrier. In this study
we investigated the biochemical and biological characteristics of Bovine
Spongiform Encephalopathy (BSE) infectious agent after transmission in both
natural host species (cattle, sheep, pigs, and mice) and in transgenic mice
overexpressing the corresponding cellular prion protein (PrPC) in comparison
with other non-BSE related prions from the same species. After these passages,
most characteristics of the BSE agent remained unchanged. BSE-derived agents
only showed slight modifications in the biochemical properties of the
accumulated PrPSc, which were demonstrated to be reversible upon re-inoculation
into transgenic mice expressing bovine-PrPC. Transmission experiments in
transgenic mice expressing bovine, porcine or human-PrP revealed that all
BSE-derived agents were transmitted with no or a weak transmission barrier. In
contrast, a high species barrier was observed for the non-BSE related prions
that harboured an identical PrP amino acid sequence such as sheep-scrapie, mouse
RML or human sCJD isolates, supporting the theory that the prion transmission
barrier is modulated by strain properties (presumably conformation-dependent)
rather than by PrP amino acid sequence differences between host and donor.
As identical results were observed with prions propagated either in natural
hosts or in transgenic mouse models, we postulate that the species barrier and
its passage consequences are uniquely governed by the host PrPC sequence and not
influenced by the PrPC expression level or genetic factors other than the PrPC
amino acid sequence. All these findings unequivocally demonstrate that the
species barrier and its passage consequences are uniquely driven by the PrPC
sequence, and not by other host genetic factors, demonstrating the validity of
transgenic PrP animals as models for studies of the species barrier.
The results presented herein reinforce the idea that the BSE agent is
highly promiscuous, infecting other species, maintaining its properties in the
new species, and even increasing its capabilities to jump to other species
including humans. These data are essential for the development of an accurate
risk assessment for BSE.
SNIP...SEE FULL TEXT ;
Monday, June 23, 2014
*** PRION 2014 TYPICAL AND ATYPICAL BSE AND CJD REPORT UPDATES
Sunday, June 29, 2014
*** Transmissible Spongiform Encephalopathy TSE Prion Disease North America
2014
snip...see full report here ;
*** Calling Canadian beef unsafe is like calling your twin sister ugly,"
Dopp said.
Thursday, August 25, 2016
*** FSIS Green Bay Dressed Beef Recalls Beef Products Due To Possible
Specified Risk Materials Contamination the most high risk materials for BSE TSE
PRION AKA MAD COW TYPE DISEASE ***
Tuesday, August 9, 2016
*** Concurrence with OIE Risk Designations for Bovine Spongiform
Encephalopathy [Docket No. APHIS-2015-0055]
Saturday, July 23, 2016
*** BOVINE SPONGIFORM ENCEPHALOPATHY BSE TSE PRION SURVEILLANCE, TESTING,
AND SRM REMOVAL UNITED STATE OF AMERICA UPDATE JULY 2016
Tuesday, July 26, 2016
*** Atypical Bovine Spongiform Encephalopathy BSE TSE Prion UPDATE JULY
2016
SPECIFIED RISK MATERIALS SRMs
USDA BSE TSE PRION SURVEILLANCE, FEED, TESTING, SRM FIREWALLS...LMAO!
THE USDA FDA TRIPLE MAD COW DISEASE FIREWALL, WERE NOTHING MORE THAN INK ON
PAPER !
infamous august 4, 1997 BSE TSE prion mad cow feed ban, part of usda fda et
al TRIPLE MAD COW FIREWALL, 10 YEARS AFTER ;
10,000,000+ LBS. of PROHIBITED BANNED MAD COW FEED I.E. BLOOD LACED MBM IN
COMMERCE USA 2007
Date: March 21, 2007 at 2:27 pm PST RECALLS AND FIELD CORRECTIONS:
VETERINARY MEDICINES -- CLASS II PRODUCT Bulk cattle feed made with recalled
Darling's 85% Blood Meal, Flash Dried, Recall # V-024-2007 CODE Cattle feed
delivered between 01/12/2007 and 01/26/2007 RECALLING FIRM/MANUFACTURER
Pfeiffer, Arno, Inc, Greenbush, WI. by conversation on February 5, 2007.
Firm initiated recall is ongoing. REASON Blood meal used to make cattle
feed was recalled because it was cross- contaminated with prohibited bovine meat
and bone meal that had been manufactured on common equipment and labeling did
not bear cautionary BSE statement.
VOLUME OF PRODUCT IN COMMERCE 42,090 lbs. DISTRIBUTION WI
___________________________________
PRODUCT Custom dairy premix products: MNM ALL PURPOSE Pellet, HILLSIDE/CDL
Prot- Buffer Meal, LEE, M.-CLOSE UP PX Pellet, HIGH DESERT/ GHC LACT Meal,
TATARKA, M CUST PROT Meal, SUNRIDGE/CDL PROTEIN Blend, LOURENZO, K PVM DAIRY
Meal, DOUBLE B DAIRY/GHC LAC Mineral, WEST PIONT/GHC CLOSEUP Mineral, WEST
POINT/GHC LACT Meal, JENKS, J/COMPASS PROTEIN Meal, COPPINI - 8# SPECIAL DAIRY
Mix, GULICK, L-LACT Meal (Bulk), TRIPLE J - PROTEIN/LACTATION, ROCK CREEK/GHC
MILK Mineral, BETTENCOURT/GHC S.SIDE MK-MN, BETTENCOURT #1/GHC MILK MINR,
V&C DAIRY/GHC LACT Meal, VEENSTRA, F/GHC LACT Meal, SMUTNY, A- BYPASS ML
W/SMARTA, Recall # V-025-2007 CODE The firm does not utilize a code - only
shipping documentation with commodity and weights identified. RECALLING
FIRM/MANUFACTURER Rangen, Inc, Buhl, ID, by letters on February 13 and 14, 2007.
Firm initiated recall is complete. REASON Products manufactured from bulk
feed containing blood meal that was cross contaminated with prohibited meat and
bone meal and the labeling did not bear cautionary BSE statement.
VOLUME OF PRODUCT IN COMMERCE 9,997,976 lbs. DISTRIBUTION ID and NV
END OF ENFORCEMENT REPORT FOR MARCH 21, 2007
16 years post mad cow feed ban August 1997
2013
Sunday, December 15, 2013
FDA PART 589 -- SUBSTANCES PROHIBITED FROM USE IN ANIMAL FOOD OR FEED
VIOLATIONS OFFICIAL ACTION INDICATED OIA UPDATE DECEMBER 2013 UPDATE
17 years post mad cow feed ban August 1997
Tuesday, December 23, 2014
FDA PART 589 -- SUBSTANCES PROHIBITED FROM USE IN ANIMAL FOOD OR FEED
VIOLATIONS OFFICIAL ACTION INDICATED OAI UPDATE DECEMBER 2014 BSE TSE PRION
*** Monday, October 26, 2015 ***
*** FDA PART 589 -- SUBSTANCES PROHIBITED FROM USE IN ANIMAL FOOD OR FEED
VIOLATIONS OFFICIAL ACTION INDICATED OIA UPDATE October 2015 ***
Thursday, July 24, 2014
*** Protocol for further laboratory investigations into the distribution of
infectivity of Atypical BSE SCIENTIFIC REPORT OF EFSA New protocol for Atypical
BSE investigations
*** Singeltary reply ; Molecular, Biochemical and Genetic Characteristics
of BSE in Canada Singeltary reply ;
SPECIFIED RISK MATERIAL SRM
DID YOUR CHILD CONSUME SOME OF THESE DEAD STOCK DOWNER COWS, THE MOST HIGH
RISK FOR MAD COW DISEASE ??? this recall was not for the welfare of the animals.
...tss
you can check and see here ; (link now dead, does not work...tss)
see listings of schools from state to state, county to county, was your
child exposed ;
try this link ;
*** Calling Canadian beef unsafe is like calling your twin sister ugly,"
Dopp said.
Thursday, August 25, 2016
*** FSIS Green Bay Dressed Beef Recalls Beef Products Due To Possible
Specified Risk Materials Contamination the most high risk materials for BSE TSE
PRION AKA MAD COW TYPE DISEASE ***
Saturday, July 16, 2016
*** Importation of Sheep, Goats, and Certain Other Ruminants [Docket No.
APHIS-2009-0095]RIN 0579-AD10
WITH great disgust and concern, I report to you that the OIE, USDA, APHIS,
are working to further legalize the trading of Transmissible Spongiform
Encephalopathy TSE Pion disease around the globe.
THIS is absolutely insane. it’s USDA INC.
Thursday, October 22, 2015
*** Former Ag Secretary Ann Veneman talks women in agriculture and we talk
mad cow disease USDA and what really happened those mad cows in Texas ***
Monday, June 20, 2016
*** Specified Risk Materials SRMs BSE TSE Prion Program ***
Tuesday, September 06, 2016
A comparison of classical and H-type bovine spongiform encephalopathy
associated with E211K prion protein polymorphism in wild type and EK211 cattle
following intracranial inoculation
***Moreover, sporadic disease has never been observed in breeding colonies
or primate research laboratories, most notably among hundreds of animals over
several decades of study at the National Institutes of Health25, and in nearly
twenty older animals continuously housed in our own facility.***
ATYPICAL BOVINE SPONGIFORM ENCEPHALOPATHY BSE TSE PRION DISEASE
>>> Both of the atypical BSE subtypes are believed to occur
spontaneously,<<<
LMAO!
LOL!
this is a myth, never proven, based on the myth of sporadic cjd, which we
now know is either iatrogenic or zoonotic. it’s also why France wanted or did
stop testing for madcow disease, because France and Poland had an epidemic of
atypical BSE cases, thus proving imo, it was NOT spontaneous...we know now that
the zoonotic potential is very real for scrapie, bse, and cwd, and it may have
already happened, and is being masked as sporadic cjd cases...
SPONTANEOUS ATYPICAL BOVINE SPONGIFORM ENCEPHALOPATHY
***Moreover, sporadic disease has never been observed in breeding colonies
or primate research laboratories, most notably among hundreds of animals over
several decades of study at the National Institutes of Health25, and in nearly
twenty older animals continuously housed in our own facility.***
Discussion: The C, L and H type BSE cases in Canada exhibit molecular
characteristics similar to those described for classical and atypical BSE cases
from Europe and Japan. This supports the theory that the importation of BSE
contaminated feedstuff is the source of C-type BSE in Canada.
*** It also suggests a similar cause or source for atypical BSE in these
countries.
Maximizing profits is all that is going on now, thanks to the OIE BSE MRR
policy, the legal trading of all strains of TSE prion disease globally. ...Terry
S. Singeltary Sr.
atypical BSE spontaneous sporadic ???
Saturday, May 26, 2012
Are USDA assurances on mad cow case 'gross oversimplification'?
SNIP...
*** What irks many scientists is the USDA’s April 25 statement that the
rare disease is “not generally associated with an animal consuming infected
feed.”
*** The USDA’s conclusion is a “gross oversimplification,” said Dr. Paul
Brown, one of the world’s experts on this type of disease who retired recently
from the National Institutes of Health.
*** "(The agency) has no foundation on which to base that statement.”
*** “We can’t say it’s not feed related,” agreed Dr. Linda Detwiler, an
official with the USDA during the Clinton Administration now at Mississippi
State.
*** In the May 1 email to me, USDA’s Cole backed off a bit. “No one knows
the origins of atypical cases of BSE,” she said
*** The argument about feed is critical because if feed is the cause, not a
spontaneous mutation, the California cow could be part of a larger outbreak.
SNIP...
Atypical BSE...Spontaneous...LOL
BSE identified in France
Posted May 2, 2016
A cow in northern France has been confirmed to have bovine spongiform
encephalopathy, according to the World Organisation for Animal Health
(OIE).
The cow had developed partial paralysis and was euthanized March 1, a March
25 OIE report states.
BSE is a fatal neurologic prion disease with a typical incubation period of
four to five years. The cow in France was almost 5 years old.
The affected cow had the classic form of BSE, which is most often
associated with feed containing neurologic tissue from infected animals. It is
distinct from atypical BSE, which may develop spontaneously, according to
information from the U.S. Centers for Disease Control and Prevention.
Investigators were trying to identify the source of infection and other
animals at risk for BSE at the time the report was published.
The affected bovine, a Salers female born on April, 8th 2011, showed
paresis and was euthanized on March, 1st 2016. Samples made on March, 4th 2016
during rendering were analyzed at the Department Laboratory of La Somme. The
rapid test proved positive on March, 8th 2016 and the samples were then sent for
further analysis to the National Reference Laboratory, ANSES, which confirmed a
case of classical BSE on March, 21st 2016. The European Union Reference
Laboratory confirmed those results on the basis of documentation on March, 23rd
2016.
>>> It is distinct from atypical BSE, which may develop
spontaneously, according to information from the U.S. Centers for Disease
Control and Prevention.
THIS IS A MYTH $$$
***atypical spontaneous BSE in France LOL***
FRANCE STOPS TESTING FOR MAD COW DISEASE BSE, and here’s why, to many
spontaneous events of mad cow disease $$$
***so 20 cases of atypical BSE in France, compared to the remaining 40
cases in the remaining 12 Countries, divided by the remaining 12 Countries,
about 3+ cases per country, besides Frances 20 cases. you cannot explain this
away with any spontaneous BSe. ...TSS
Sunday, October 5, 2014
France stops BSE testing for Mad Cow Disease
Thursday, March 24, 2016
FRANCE CONFIRMS BOVINE SPONGIFORM ENCEPHALOPATHY BSE MAD COW (ESB) chez une
vache dans les Ardennes
***atypical spontaneous BSE in France LOL***
FRANCE STOPS TESTING FOR MAD COW DISEASE BSE, and here’s why, to many
spontaneous events of mad cow disease $$$
If you Compare France to other Countries with atypical BSE, in my opinion,
you cannot explain this with ‘spontaneous’.
Table 1: Number of Atypical BSE cases reported by EU Member States in the
period 2001–2014 by country and by type (L- and H-BSE) (extracted from EU BSE
databases on 1 July 2014). By 2015, these data might be more comprehensive
following a request from the European Commission to Member States for re-testing
and retrospective classification of all positive bovine isolates in the EU in
the years 2003–2009
BSE type
Country 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013(a)
2014(a) Total
H-BSE Austria 1 1
France(b) 1 2 3 1 2 2 2 2 15
Germany 1 1 2
Ireland 1 1 2 1 5
The Netherlands 1 1
Poland 1 1 2
Portugal 1 1
Spain 1 1 2
Sweden 1 1
United Kingdom 1 1 1 1 1 5
Total 2 3 3 1 1 2 2 2 4 4 5 1 4 1 35
L-BSE Austria 1 1 2
Denmark 1 1
France(b) 1 1 1 1 2 1 3 2 1 1 14
Germany 1 1 2
Italy 1 1 1 1 1 5
The Netherlands 1 1 1 3
Poland 1 2 2 1 2 1 2 1 12
Spain 2 2
United Kingdom 1 1 1 1 4
Total 0 5 3 4 3 3 6 3 3 4 3 6 1 1 45
Total Atypical cases (H + L)
2 8 6 5 4 5 8 5 7 8 8 7 5 2 80
(a): Data for 2013-2014 are incomplete and may not include all
cases/countries reported.
(b): France has performed extensive retrospective testing to classify BSE
cases, which is probably the explanation for the higher number of Atypical BSE
cases reported in this country.
The number of Atypical BSE cases detected in countries that have already
identified them seems to be similar from year to year. In France, a
retrospective study of all TSE-positive cattle identified through the compulsory
EU surveillance between 2001 and 2007 indicated that the prevalence of H-BSE and
L-BSE was 0.35 and 0.41 cases per million adult cattle tested, respectively,
which increased to 1.9 and 1.7 cases per million, respectively, in tested
animals over eight years old (Biacabe et al., 2008). No comprehensive study on
the prevalence of Atypical BSE cases has yet been carried out in other EU Member
States. All cases of Atypical BSE reported in the EU BSE databases have been
identified by active surveillance testing (59 % in fallen stock, 38 % in healthy
slaughtered cattle and 4 % in emergency slaughtered cattle). Cases were reported
in animals over eight years of age, with the exception of two cases (one H-BSE
and one L-BSE) detected in Spain in 2011/2012. One additional case of H-BSE was
detected in Switzerland in 2012 in a cow born in Germany in 2005 (Guldimann et
al., 2012).
Atypical BSE study protocol
EFSA Journal 2014;12(7):3798 8
Table 1: Number of Atypical BSE cases reported by EU Member States in the
period 2001–2014 by country and by type (L- and H-BSE) (extracted from EU BSE
databases on 1 July 2014). By 2015, these data might be more comprehensive
following a request from the European Commission to Member States for re-testing
and retrospective classification of all positive bovine isolates in the EU in
the years 2003–2009
BSE type Country 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
2012 2013(a) 2014(a) Total
H-BSE
Austria 1 1
France(b) 1 2 3 1 2 2 2 2 15
Germany 1 1 2 Ireland 1 1 2 1 5
The Netherlands 1 1
Poland 1 1 2
Portugal 1 1
Spain 1 1 2
Sweden 1 1
United Kingdom 1 1 1 1 1 5
Total 2 3 3 1 1 2 2 2 4 4 5 1 4 1 35
L-BSE
Austria 1 1 2
Denmark 1 1
France(b) 1 1 1 1 2 1 3 2 1 1 14
Germany 1 1 2 Italy 1 1 1 1 1 5
The Netherlands 1 1 1 3
Poland 1 2 2 1 2 1 2 1 12
Spain 2 2
United Kingdom 1 1 1 1 4
Total 0 5 3 4 3 3 6 3 3 4 3 6 1 1 45
Total Atypical cases (H + L) 2 8 6 5 4 5 8 5 7 8 8 7 5 2 80
(a): Data for 2013-2014 are incomplete and may not include all
cases/countries reported.
(b): France has performed extensive retrospective testing to classify BSE
cases, which is probably the explanation for the higher number of Atypical BSE
cases reported in this country.
snip...
> (b): France has performed extensive retrospective testing to classify
BSE cases, which is probably the explanation for the higher number of Atypical
BSE cases reported in this country.
LOL!!!
Thursday, July 24, 2014
*** Protocol for further laboratory investigations into the distribution of
infectivity of Atypical BSE SCIENTIFIC REPORT OF EFSA New protocol for Atypical
BSE investigations
Sunday, October 5, 2014
*** France stops BSE testing for Mad Cow Disease
we have seen the spontaneous BSE epidemic in France, what about the other
HIGH INCIDENCE ATYPICAL BSE COUNTRY OF POLAND, another atypical spontaneous
event of high incidence. how can this be blamed on a happenstance of nothing,
i.e. old age? goes against all junk science to date on the spontaneous atypical
BSE i.e.
> In 2015, the OIE determined that atypical BSE occurred spontaneously
at a low rate in all cattle populations and would be excluded for BSE risk.
...
>Atypical BSE occurs in older cattle, usually 8 years of age or greater,
and does not appear to be associated with contaminated feed. Like classic or
sporadic CJD in humans, it seems to arise rarely and spontaneously.
and if you believe that lie, myth, junk science, then you will believe this
i.e.
> Regulations from the Food and Drug Administration (FDA) have
prohibited the inclusion of mammalian protein in feed for cattle and other
ruminants since 1997 and have also prohibited high risk tissue materials in all
animal feed since 2009.
LAUGH OUT LOUD ! LOL!
POLAND ATYPICAL BSE AND SPORADIC CJD
Issue 2 Journal for Veterinary Medicine, Biotechnology and Biosafety
Volume 1, Issue 2, June 2015, Pages 12–14
ISSN 2411-3174 (print version) ISSN 2411-0388 (online version)
EPIDEmIOLOGY Of BOVINE SPONGIfORm ENCEPHALOPATHY IN CATTLE IN POLAND
Polak M. P., Zmudzinski J. F.
National Veterinary Research Institute, Pulawy, Poland e-mail:
ppolak@piwet.pulawy.pl
Download PDF (print version)
Citation for print version: Polak M. P. and Zmudzinski J. F. (2015)
‘Epidemiology of bovine spongiform encephalopathy in cattle in Poland’, Journal
for Veterinary Medicine, Biotechnology and Biosafety, 1(2), pp. 12–14.
Download PDF (online version)
Citation for online version: Polak M. P. and Zmudzinski J. F. (2015)
‘Epidemiology of bovine spongiform encephalopathy in cattle in Poland’, Journal
for Veterinary Medicine, Biotechnology and Biosafety. [Online] 1(2), pp. 12–14.
Available at:
Summary. The aim of the paper was to present the epidemiological situation
regarding BSE epidemic in Poland with respect to cattle population, active
surveillance and the control measures. Epidemiological data from the archives of
the national reference laboratory for animal TSEs at the National Veterinary
Research Institute and from the archives of the General Veterinary Inspectorate
in Warsaw were used in the study. Between 2001 and the end of April 2015 BSE was
diagnosed in 75 animals. Sixty one cases were classical BSE and 14 were atypical
BSE (12 of L-type and 2 of H-type). Almost 6 million animals were tested using
rapid tests. Dynamics of C-type BSE shows constant rise until 2005 when the
highest number of cases (20) was recorded with sharp drop in the following
years. Prevalence of atypical BSE shows stable trend with slight fluctuations.
Traditional feeding was used in 65 and 90% of classical and atypical BSE cases,
respectively. On the other hand, traditional feed was supplemented with MBM and
milk replacers in 46 and 10% of classical and atypical BSE cases, respectively.
Despite the high infectious load introduced into Poland especially with MBM, the
number of cases was relatively low. In Poland, relatively high number of
atypical BSE cases was recorded, comprising 19% of all BSE-positive animals.
Mean age of classical BSE cases diagnosed annually does not show a decreasing
trend which may reflect the late introduction of feed ban in Poland.
Keywords: bovine spongiform encephalopathy, Poland, prevalence, prion
protein, control measures
O.08: H-type bovine spongiform encephalopathy associated with E211K prion
protein polymorphism: Clinical and pathologic features in wild-type and E211K
cattle following intracranial inoculation
S Jo Moore, M Heather West Greenlee, Jodi Smith, Eric Nicholson, Cathy
Vrentas, and Justin Greenlee
United States Department of Agriculture; Ames, IA USA
In 2006 an H-type bovine spongiform encephalopathy (BSE) case was reported
in an animal with an unusual polymorphism (E211K) in the prion protein gene.
Although the prevalence of this polymorphism is low, cattle carrying the K211
allele are predisposed to rapid onset of H-type BSE when exposed. The purpose of
this study was to investigate the phenotype of this BSE strain in wild-type
(E211E) and E211K heterozygous cattle.
One calf carrying the wild-type allele and one E211K calf were inoculated
intracranially with H-type BSE brain homogenate from the US 2006 case that also
carried one K211 allelle. In addition, one wild-type calf and one E211K calf
were inoculated intracranially with brain homogenate from a US 2003 classical
BSE case. All animals succumbed to clinical disease. Survival times for E211K
H-type BSE inoculated catttle (10 and 18 months) were shorter than the classical
BSE inoculated cattle (both 26 months). Significant changes in retinal function
were observed in H-type BSE challenged cattle only. Animals challenged with the
same inoculum showed similar severity and neuroanatomical distribution of
vacuolation and disease-associated prion protein deposition in the brain, though
differences in neuropathology were observed between E211K H-type BSE and
classical BSE inoculated animals. Western blot results for brain tissue from
challenged animals were consistent with the inoculum strains.
This study demonstrates that the phenotype of E211K H-type BSE remains
stable when transmitted to cattle without the E211K polymorphism, and exhibits a
number of features that differ from classical BSE in both wild-type and E211K
cattle.
===================
P.86: Estimating the risk of transmission of BSE and scrapie to ruminants
and humans by protein misfolding cyclic amplification
Morikazu Imamura, Naoko Tabeta, Yoshifumi Iwamaru, and Yuichi
Murayama
National Institute of Animal Health; Tsukuba, Japan
To assess the risk of the transmission of ruminant prions to ruminants and
humans at the molecular level, we investigated the ability of abnormal prion
protein (PrPSc) of typical and atypical BSEs (L-type and H-type) and typical
scrapie to convert normal prion protein (PrPC) from bovine, ovine, and human to
proteinase K-resistant PrPSc-like form (PrPres) using serial protein misfolding
cyclic amplification (PMCA).
Six rounds of serial PMCA was performed using 10% brain homogenates from
transgenic mice expressing bovine, ovine or human PrPC in combination with PrPSc
seed from typical and atypical BSE- or typical scrapie-infected brain
homogenates from native host species. In the conventional PMCA, the conversion
of PrPC to PrPres was observed only when the species of PrPC source and PrPSc
seed matched. However, in the PMCA with supplements (digitonin, synthetic polyA
and heparin), both bovine and ovine PrPC were converted by PrPSc from all tested
prion strains. On the other hand, human PrPC was converted by PrPSc from typical
and H-type BSE in this PMCA condition.
Although these results were not compatible with the previous reports
describing the lack of transmissibility of H-type BSE to ovine and human
transgenic mice, our findings suggest that possible transmission risk of H-type
BSE to sheep and human. Bioassay will be required to determine whether the PMCA
products are infectious to these animals.
==============
***our findings suggest that possible transmission risk of H-type BSE to
sheep and human. Bioassay will be required to determine whether the PMCA
products are infectious to these animals.
==============
Monday, May 09, 2016
A comparison of classical and H-type bovine spongiform encephalopathy
associated with E211K prion protein polymorphism in wild type and EK211 cattle
following intracranial inoculation
I ask Professor Kong ;
Thursday, December 04, 2008 3:37 PM Subject: RE: re--Chronic Wating Disease
(CWD) and Bovine Spongiform Encephalopathies (BSE): Public Health Risk
Assessment
''IS the h-BSE more virulent than typical BSE as well, or the same as cBSE,
or less virulent than cBSE? just curious.....''
Professor Kong reply ;
.....snip
''As to the H-BSE, we do not have sufficient data to say one way or
another, but we have found that H-BSE can infect humans. I hope we could publish
these data once the study is complete. Thanks for your interest.''
Best regards, Qingzhong Kong, PhD Associate Professor Department of
Pathology Case Western Reserve University Cleveland, OH 44106 USA
END...TSS
Thursday, December 04, 2008 2:37 PM
"we have found that H-BSE can infect humans."
personal communication with Professor Kong. ...TSS
BSE-H is also transmissible in our humanized Tg mice.
The possibility of more than two atypical BSE strains will be discussed.
Supported by NINDS NS052319, NIA AG14359, and NIH AI 77774.
Monday, March 19, 2012
Infectivity in Skeletal Muscle of Cattle with Atypical Bovine Spongiform
Encephalopathy PLoS One. 2012; 7(2): e31449.
Tuesday, August 9, 2016
*** Concurrence with OIE Risk Designations for Bovine Spongiform
Encephalopathy [Docket No. APHIS-2015-0055]
Saturday, July 23, 2016
*** BOVINE SPONGIFORM ENCEPHALOPATHY BSE TSE PRION SURVEILLANCE, TESTING,
AND SRM REMOVAL UNITED STATE OF AMERICA UPDATE JULY 2016
Tuesday, July 26, 2016
*** Atypical Bovine Spongiform Encephalopathy BSE TSE Prion UPDATE JULY
2016
Saturday, July 16, 2016
*** Importation of Sheep, Goats, and Certain Other Ruminants [Docket No.
APHIS-2009-0095]RIN 0579-AD10
WITH great disgust and concern, I report to you that the OIE, USDA, APHIS,
are working to further legalize the trading of Transmissible Spongiform
Encephalopathy TSE Pion disease around the globe.
THIS is absolutely insane. it’s USDA INC.
Thursday, October 22, 2015
*** Former Ag Secretary Ann Veneman talks women in agriculture and we talk
mad cow disease USDA and what really happened those mad cows in Texas ***
Monday, June 20, 2016
*** Specified Risk Materials SRMs BSE TSE Prion Program ***
2016 PIGS TSE PRION UPDATE
WS-02
Scrapie in swine: A diagnostic challenge
Justin J Greenlee1, Robert A Kunkle1, Jodi D Smith1, Heather W. Greenlee2
1National Animal Disease Center, US Dept. of Agriculture, Agricultural
Research Service, United States; 2Iowa State University College of Veterinary
Medicine
A naturally occurring prion disease has not been recognized in swine, but
the agent of bovine spongiform encephalopathy does transmit to swine by
experimental routes. Swine are thought to have a robust species barrier when
exposed to the naturally occurring prion diseases of other species, but the
susceptibility of swine to the agent of sheep scrapie has not been thoroughly
tested.
Since swine can be fed rations containing ruminant derived components in
the United States and many other countries, we conducted this experiment to test
the susceptibility of swine to U.S. scrapie isolates by intracranial and oral
inoculation. Scrapie inoculum was a pooled 10% (w/v) homogenate derived from the
brains of clinically ill sheep from the 4th passage of a serial passage study of
the U.S scrapie agent (No. 13-7) through susceptible sheep that were homozygous
ARQ at prion protein residues 136, 154, and 171, respectively. Pigs were
inoculated intracranially (n=19) with a single 0.75 ml dose or orally (n=24)
with 15 ml repeated on 4 consecutive days. Necropsies were done on a subset of
animals at approximately six months post inoculation (PI), at the time the pigs
were expected to reach market weight. Remaining pigs were maintained and
monitored for clinical signs of TSE until study termination at 80 months PI or
when removed due to intercurrent disease (primarily lameness). Brain samples
were examined by immunohistochemistry (IHC), western blot (WB), and
enzyme-linked immunosorbent assay (ELISA). Brain tissue from a subset of pigs in
each inoculation group was used for bioassay in mice expressing porcine PRNP.
At six-months PI, no evidence of scrapie infection was noted by any
diagnostic method. However, at 51 months of incubation or greater, 5 animals
were positive by one or more methods: IHC (n=4), WB (n=3), or ELISA (n=5).
Interestingly, positive bioassay results were obtained from all inoculated
groups (oral and intracranial; market weight and end of study).
Swine inoculated with the agent of scrapie by the intracranial and oral
routes do not accumulate abnormal prion protein (PrPSc) to a level detectable by
IHC or WB by the time they reach typical market age and weight. However, strong
support for the fact that swine are potential hosts for the agent of scrapie
comes from positive bioassay from both intracranially and orally inoculated pigs
and multiple diagnostic methods demonstrating abnormal prion protein in
intracranially inoculated pigs with long incubation times.
Curriculum Vitae
Dr. Greenlee is Research Veterinary Medical Officer in the Virus and Prion
Research Unit at the National Animal Disease Center, US Department of
Agriculture, Agricultural Research Service. He applies his specialty in
veterinary anatomic pathology to focused research on the intra- and interspecies
transmission of prion diseases in livestock and the development of antemortem
diagnostic assays for prion diseases. In addition, knockout and transgenic mouse
models are used to complement ongoing experiments in livestock species. Dr.
Greenlee has publications in a number of topic areas including prion agent
decontamination, effects of PRNP genotype on susceptibility to the agent of
sheep scrapie, characterization of US scrapie strains, transmission of chronic
wasting disease to cervids and cattle, features of H-BSE associated with the
E211 K polymorphism, and the development of retinal assessment for antemortem
screening for prion diseases in sheep and cattle. Dr. Greenlee obtained his DVM
degree and completed the PhD/residency program in Veterinary Pathology at Iowa
State University. He is a Diplomate of the American College of Veterinary
Pathologists.
Prion
Volume 9, Issue 4, 2015
Porcine prion protein amyloid
DOI:10.1080/19336896.2015.1065373Per Hammarströma & Sofie Nyströma*
pages 266-277
Received: 1 Jun 2015 Accepted: 17 Jun 2015 Accepted author version posted
online: 28 Jul 2015
© 2015 The Author(s). Published with license by Taylor & Francis Group,
LLC Additional license information
ABSTRACT
Mammalian prions are composed of misfolded aggregated prion protein (PrP)
with amyloid-like features. Prions are zoonotic disease agents that infect a
wide variety of mammalian species including humans. Mammals and by-products
thereof which are frequently encountered in daily life are most important for
human health. It is established that bovine prions (BSE) can infect humans while
there is no such evidence for any other prion susceptible species in the human
food chain (sheep, goat, elk, deer) and largely prion resistant species (pig) or
susceptible and resistant pets (cat and dogs, respectively). PrPs from these
species have been characterized using biochemistry, biophysics and neurobiology.
Recently we studied PrPs from several mammals in vitro and found evidence for
generic amyloidogenicity as well as cross-seeding fibril formation activity of
all PrPs on the human PrP sequence regardless if the original species was
resistant or susceptible to prion disease. Porcine PrP amyloidogenicity was
among the studied. Experimentally inoculated pigs as well as transgenic mouse
lines overexpressing porcine PrP have, in the past, been used to investigate the
possibility of prion transmission in pigs. The pig is a species with
extraordinarily wide use within human daily life with over a billion pigs
harvested for human consumption each year. Here we discuss the possibility that
the largely prion disease resistant pig can be a clinically silent carrier of
replicating prions.
SNIP...
CONCLUDING REMARKS Should the topic of porcine PrP amyloid be more of a
worry than of mere academic interest? Well perhaps. Prions are particularly
insidious pathogens. A recent outbreak of peripheral neuropathy in human,
suggests that exposure to aerosolized porcine brain is deleterious for human
health.43,44 Aerosolization is a known vector for prions at least under
experimental conditions.45-47 where a mere single exposure was enough for
transmission in transgenic mice. HuPrP is seedable with BoPrP seeds and even
more so with PoPrP seed (Fig. 1), indicating that humans could be infected by
porcine APrP prions while neurotoxicity associated with spongiform
encephalopathy if such a disease existed is even less clear. Importantly
transgenic mice over-expressing PoPrP are susceptible to BSE and BSE passaged
through domestic pigs implicating that efficient downstream neurotoxicity
pathways in the mouse, a susceptible host for prion disease neurotoxicity is
augmenting the TSE phenotype.25,26 Prions in silent carrier hosts can be
infectious to a third species. Data from Collinge and coworkers.21 propose that
species considered to be prion free may be carriers of replicating prions.
Especially this may be of concern for promiscuous prion strains such as
BSE.19,48 It is rather established that prions can exist in both replicating and
neurotoxic conformations.49,50 and this can alter the way in which new host
organisms can react upon cross-species transmission.51 The na€ıve host can
either be totally resistant to prion infection as well as remain non-infectious,
become a silent non-symptomatic but infectious carrier of disease or be
afflicted by disease with short or long incubation time. The host can harbor
and/or propagate the donor strain or convert the strain conformation to adapt it
to the na€ıve host species. The latter would facilitate infection and shorten
the incubation time in a consecutive event of intra-species transmission. It may
be advisable to avoid procedures and exposure without proper biosafety
precautions as the knowledge of silence carrier species is poor. One case of
iatrogenic CJD in recipient of porcine dura mater graft has been reported in the
literature.52 The significance of this finding is still unknown. The low public
awareness in this matter is exemplified by the practice of using proteolytic
peptide mixtures prepared from porcine brains (Cerebrolysin) as a nootropic
drug. While Cerebrolysin may be beneficial for treatment of severe diseases such
as vascular dementia,53 a long term follow-up of such a product for recreational
use is recommended.
Friday, August 21, 2015
Porcine prion protein amyloid or mad pig disease PSE Porcine Spongiform
Encephalopathy ?
Tuesday, December 16, 2014
Evidence for zoonotic potential of ovine scrapie prions
Hervé Cassard,1, n1 Juan-Maria Torres,2, n1 Caroline Lacroux,1, Jean-Yves
Douet,1, Sylvie L. Benestad,3, Frédéric Lantier,4, Séverine Lugan,1, Isabelle
Lantier,4, Pierrette Costes,1, Naima Aron,1, Fabienne Reine,5, Laetitia
Herzog,5, Juan-Carlos Espinosa,2, Vincent Beringue5, & Olivier
Andréoletti1, Affiliations Contributions Corresponding author Journal name:
Nature Communications Volume: 5, Article number: 5821 DOI:
doi:10.1038/ncomms6821 Received 07 August 2014 Accepted 10 November 2014
Published 16 December 2014 Article tools Citation Reprints Rights &
permissions Article metrics
Abstract
Although Bovine Spongiform Encephalopathy (BSE) is the cause of variant
Creutzfeldt Jakob disease (vCJD) in humans, the zoonotic potential of scrapie
prions remains unknown. Mice genetically engineered to overexpress the human
prion protein (tgHu) have emerged as highly relevant models for gauging the
capacity of prions to transmit to humans. These models can propagate human
prions without any apparent transmission barrier and have been used used to
confirm the zoonotic ability of BSE. Here we show that a panel of sheep scrapie
prions transmit to several tgHu mice models with an efficiency comparable to
that of cattle BSE. The serial transmission of different scrapie isolates in
these mice led to the propagation of prions that are phenotypically identical to
those causing sporadic CJD (sCJD) in humans. These results demonstrate that
scrapie prions have a zoonotic potential and raise new questions about the
possible link between animal and human prions.
Subject terms: Biological sciences• Medical research At a glance
*** In complement to the recent demonstration that humanized mice are
susceptible to scrapie, we report here the first observation of direct
transmission of a natural classical scrapie isolate to a macaque after a 10-year
incubation period. Neuropathologic examination revealed all of the features of a
prion disease: spongiform change, neuronal loss, and accumulation of PrPres
throughout the CNS.
*** This observation strengthens the questioning of the harmlessness of
scrapie to humans, at a time when protective measures for human and animal
health are being dismantled and reduced as c-BSE is considered controlled and
being eradicated.
*** Our results underscore the importance of precautionary and protective
measures and the necessity for long-term experimental transmission studies to
assess the zoonotic potential of other animal prion strains.
Prion. 10:S15-S21. 2016 ISSN: 1933-6896 printl 1933-690X online
Taylor & Francis
Prion 2016 Animal Prion Disease Workshop Abstracts
WS-01: Prion diseases in animals and zoonotic potential
Juan Maria Torres a, Olivier Andreoletti b, J uan-Carlos Espinosa a.
Vincent Beringue c. Patricia Aguilar a,
Natalia Fernandez-Borges a. and Alba Marin-Moreno a
"Centro de Investigacion en Sanidad Animal ( CISA-INIA ). Valdeolmos,
Madrid. Spain; b UMR INRA -ENVT 1225 Interactions Holes Agents Pathogenes. ENVT.
Toulouse. France: "UR892. Virologie lmmunologie MolécuIaires, Jouy-en-Josas.
France
Dietary exposure to bovine spongiform encephalopathy (BSE) contaminated
bovine tissues is considered as the origin of variant Creutzfeldt Jakob (vCJD)
disease in human. To date, BSE agent is the only recognized zoonotic prion.
Despite the variety of Transmissible Spongiform Encephalopathy (TSE) agents that
have been circulating for centuries in farmed ruminants there is no apparent
epidemiological link between exposure to ruminant products and the occurrence of
other form of TSE in human like sporadic Creutzfeldt Jakob Disease (sCJD).
However, the zoonotic potential of the diversity of circulating TSE agents has
never been systematically assessed. The major issue in experimental assessment
of TSEs zoonotic potential lies in the modeling of the ‘species barrier‘, the
biological phenomenon that limits TSE agents’ propagation from a species to
another. In the last decade, mice genetically engineered to express normal forms
of the human prion protein has proved essential in studying human prions
pathogenesis and modeling the capacity of TSEs to cross the human species
barrier.
To assess the zoonotic potential of prions circulating in farmed ruminants,
we study their transmission ability in transgenic mice expressing human PrPC
(HuPrP-Tg). Two lines of mice expressing different forms of the human PrPC
(129Met or 129Val) are used to determine the role of the Met129Val dimorphism in
susceptibility/resistance to the different agents.
These transmission experiments confirm the ability of BSE prions to
propagate in 129M- HuPrP-Tg mice and demonstrate that Met129 homozygotes may be
susceptible to BSE in sheep or goat to a greater degree than the BSE agent in
cattle and that these agents can convey molecular properties and
neuropathological indistinguishable from vCJD. However homozygous 129V mice are
resistant to all tested BSE derived prions independently of the originating
species suggesting a higher transmission barrier for 129V-PrP variant.
Transmission data also revealed that several scrapie prions propagate in
HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the
efficiency of transmission at primary passage was low, subsequent passages
resulted in a highly virulent prion disease in both Met129 and Val129 mice.
Transmission of the different scrapie isolates in these mice leads to the
emergence of prion strain phenotypes that showed similar characteristics to
those displayed by MM1 or VV2 sCJD prion. These results demonstrate that scrapie
prions have a zoonotic potential and raise new questions about the possible link
between animal and human prions.
Tuesday, April 28, 2009
Nor98-like Scrapie in the United States of America
Thursday, March 29, 2012
atypical Nor-98 Scrapie has spread from coast to coast in the USA 2012
NIAA Annual Conference April 11-14, 2011San Antonio, Texas
*** Canada Increased Atypical Scrapie Detections
Press reports indicate that increased surveillance is catching what
otherwise would have been unreported findings of atypical scrapie in sheep. In
2009, five new cases have been reported in Quebec, Ontario, Alberta, and
Saskatchewan. With the exception of Quebec, all cases have been diagnosed as
being the atypical form found in older animals. Canada encourages producers to
join its voluntary surveillance program in order to gain scrapie-free status.
The World Animal Health will not classify Canada as scrapie-free until no new
cases are reported for seven years. The Canadian Sheep Federation is calling on
the government to fund a wider surveillance program in order to establish the
level of prevalence prior to setting an eradication date. Besides long-term
testing, industry is calling for a compensation program for farmers who report
unusual deaths in their flocks.
why do we not want to do TSE transmission studies on chimpanzees $
5. A positive result from a chimpanzee challenged severly would likely
create alarm in some circles even if the result could not be interpreted for
man. I have a view that all these agents could be transmitted provided a large
enough dose by appropriate routes was given and the animals kept long enough.
Until the mechanisms of the species barrier are more clearly understood it might
be best to retain that hypothesis.
snip...
R. BRADLEY
1978 SCRAPIE IN CONFIDENCE SCJD
1979
SILENCE ON CJD AND SCRAPIE
1980
SILENCE ON CJD AND SCRAPIE
*** 1981 NOVEMBER
Thursday, August 04, 2016
*** MEETING ON THE FEASIBILITY OF CARRYING OUT EPIDEMIOLOGICAL STUDIES ON
CREUTZFELDT JAKOB DISEASE 1978 THE SCRAPIE FILES IN CONFIDENCE CONFIDENTIAL
SCJD
Experimental transmission of atypical scrapie to sheep
Marion M Simmons1Email author, Timm Konold1, Hugh A Simmons3, Yvonne I
Spencer1, Richard Lockey1, John Spiropoulos1, Sharon Everitt2 and Derek
Clifford3 BMC Veterinary Research20073:20 DOI: 10.1186/1746-6148-3-20
© Crown copyright; licensee BioMed Central Ltd. 2007
Received: 26 March 2007
Accepted: 28 August 2007
Published: 28 August 2007
Abstract Background Active surveillance for transmissible spongiform
encephalopathies in small ruminants has been an EU regulatory requirement since
2002. A number of European countries have subsequently reported cases of
atypical scrapie, similar to previously published cases from Norway, which have
pathological and molecular features distinct from classical scrapie. Most cases
have occurred singly in flocks, associated with genotypes considered to be more
resistant to classical disease. Experimental transmissibility of such isolates
has been reported in certain ovinised transgenic mice, but has not previously
been reported in the natural host. Information on the transmissibility of this
agent is vital to ensuring that disease control measures are effective and
proportionate.
Results This report presents the successful experimental transmission, in
378 days, of atypical scrapie to a recipient sheep of homologous genotype with
preservation of the pathological and molecular characteristics of the donor.
This isolate also transmitted to ovinised transgenic mice (Tg338) with a murine
phenotype indistinguishable from that of Nor 98.
Conclusion This result strengthens the opinion that these cases result from
a distinct strain of scrapie agent, which is potentially transmissible in the
natural host under field conditions.
snip...
Conclusion At present the significance of this result, in terms of the
transmissibility or pathogenicity under 'field conditions' of this agent strain
in any species remains speculative, but it supports the need for appropriate
control measures protecting both the animal and the human food chain to
encompass atypical scrapie cases specifically.
Atypical/Nor98 scrapie in the Basque Country: a case report of eight
outbreaks
BMC Veterinary Research 2010, 6:17 doi:10.1186/1746-6148-6-17
Sunday, March 28, 2010
Atypical/Nor98 scrapie in the Basque Country: a case report of eight
outbreaks
Wednesday, March 3, 2010
NOR-98 ATYPICAL SCRAPIE USA 4 CASES DETECTED JANUARY 2010
Greetings,
Unusual event if you consider the officials hypothisis that Nor-98 atypical
scrapie is a spontaneous event. seems there was a great deal of spontaneous
mutations for this time period ;-)...TSS
Thursday, March 11, 2010
CANADA TYPICAL AND ATYPICAL SCRAPIE REPORT TO MARCH 2010
Monday, December 14, 2009
Similarities between Forms of Sheep Scrapie and Creutzfeldt-Jakob Disease
Are Encoded by Distinct Prion Types
hmmm, this is getting interesting now...
Sporadic CJD type 1 and atypical/ Nor98 scrapie are characterized by fine
(reticular) deposits,
see also ;
All of the Heidenhain variants were of the methionine/ methionine type 1
molecular subtype.
see full text ;
Monday, December 14, 2009
Similarities between Forms of Sheep Scrapie and Creutzfeldt-Jakob Disease
Are Encoded by Distinct Prion Types
Saturday, May 2, 2009
APHIS AND WHO PLAN TO EXEMPT THE ATYPICAL SCRAPIE NOR-98 FROM REGULATIONS
AT MEETING THIS MONTH
Monday, November 30, 2009
USDA AND OIE COLLABORATE TO EXCLUDE ATYPICAL SCRAPIE NOR-98 ANIMAL HEALTH
CODE
Tuesday, September 27, 2016
Classical Scrapie Diagnosis in ARR/ARR Sheep in Brazil Acta Scientiae
Veterinariae, 2015. 43(Suppl 1): 69.
Friday, September 23, 2016
North Iceland reporting more cases of Scrapie (Rida)
Monday, September 19, 2016
Identification of the first case of atypical scrapie in Japan
Assessment of the PrPc amino-terminal domain in prion species barriers
Kristen A. Davenporta, Davin M. Hendersona, Candace K. Mathiasona and
Edward A. Hoovera# + Author Affiliations
Prion Research Center, Department of Microbiology, Immunology and
Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado
State University, Fort Collins, CO 80523a ABSTRACT Chronic wasting disease (CWD)
in cervids and bovine spongiform encephalopathy (BSE) in cattle are prion
diseases that are caused by the same protein-misfolding mechanism, but appear to
pose different risks to humans. We are interested in understanding the
differences between the species barriers of CWD and BSE. We used real-time,
quaking-induced conversion (RT-QuIC) to model the central molecular event in
prion disease, the templated misfolding of the normal prion protein, PrPc, to a
pathogenic, amyloid isoform, PrPSc. We examined the role of the PrPc
amino-terminal domain (NTD, aa23-90) in cross-species conversion by comparing
the conversion efficiency of various prion seeds in either full-length
(aa23-231) or truncated (aa90-231) PrPc. We demonstrate that the presence of
white-tailed deer and bovine NTDs hindered seeded conversion of PrPc, but human
and bank vole NTDs did the opposite. Additionally, full-length human and bank
vole PrPc were more likely to be converted to amyloid by CWD prions than were
their truncated forms. A chimera with replacement of the human NTD by the bovine
NTD resembled human PrPc. The requirement for an NTD, but not for the specific
human sequence, suggests that the NTD interacts with other regions of the human
PrPc to increase promiscuity. These data contribute to the evidence that, in
addition to primary sequence, prion species barriers are controlled by
interactions of the substrate NTD with the rest of the substrate PrPc molecule.
Importance We demonstrate that the amino-terminal domain of the normal
prion protein, PrPc, hinders seeded conversion of bovine and white-tailed deer
PrPc to the prion form, but it facilitates conversion of the human and bank vole
PrPc to the prion form. Additionally, we demonstrate that the amino-terminal
domain of human and bank vole PrPc requires interaction with the rest of the
molecule to facilitate conversion by CWD prions. These data suggest that
interactions of the amino-terminal domain with the rest of the PrPc molecule
play an important role in the susceptibility of humans to CWD prions.
snip...
We found that human rPrPc can be readily converted to an amyloid state by
CWD prions, and that the NTD facilitates this conversion. As there is little
evidence for the susceptibility of humans to CWD, the biologic significance of
our observation remains to be determined. However, the role of the NTD in this
in vitro phenomenon may be important to the in vivo mechanism as well. RT-QuIC,
transgenic mouse bioassay, and PMCA measure different outcomes. This manuscript
compares the efficiency of initial amyloid formation, while bioassay and PMCA
reflect total accumulation of protease-resistant PrPSc, which may explain the
difference in the apparent susceptibility of full-length human rPrPc in these
models. The molecular underpinnings for species barriers and trans-species prion
conversion remain a complex, yet important problem in prion biology. We propose
that an interaction between the amino terminal
FOOTNOTES
↵#Address correspondence to Edward A. Hoover, edward.hoover@colostate.edu
Copyright © 2016, American Society for Microbiology. All Rights Reserved.
‘’We demonstrate that the presence of white-tailed deer and bovine NTDs
hindered seeded conversion of PrPc, but human and bank vole NTDs did the
opposite. Additionally, full-length human and bank vole PrPc were more likely to
be converted to amyloid by CWD prions than were their truncated forms. ‘’
***Moreover, sporadic disease has never been observed in breeding colonies
or primate research laboratories, most notably among hundreds of animals over
several decades of study at the National Institutes of Health25, and in nearly
twenty older animals continuously housed in our own facility.***
Monday, May 02, 2016
*** Zoonotic Potential of CWD Prions: An Update Prion 2016 Tokyo ***
SCRAPIE AND CWD ZOONOSIS
PRION 2016 CONFERENCE TOKYO
Saturday, April 23, 2016
*** SCRAPIE WS-01: Prion diseases in animals and zoonotic potential 2016
***
Prion. 10:S15-S21. 2016 ISSN: 1933-6896 printl 1933-690X
Saturday, September 24, 2016
Assessment of the PrPc amino-terminal domain in prion species barriers
Transmission of scrapie prions to primate after an extended silent
incubation period
***Moreover, sporadic disease has never been observed in breeding colonies
or primate research laboratories, most notably among hundreds of animals over
several decades of study at the National Institutes of Health25, and in nearly
twenty older animals continuously housed in our own facility.***
Transmission of scrapie prions to primate after an extended silent
incubation period
Emmanuel E. Comoy , Jacqueline Mikol , Sophie Luccantoni-Freire , Evelyne
Correia , Nathalie Lescoutra-Etchegaray , Valérie Durand , Capucine Dehen ,
Olivier Andreoletti , Cristina Casalone , Juergen A. Richt , Justin J. Greenlee
, Thierry Baron , Sylvie L. Benestad , Paul Brown & Jean-Philippe Deslys
Abstract
Classical bovine spongiform encephalopathy (c-BSE) is the only animal prion
disease reputed to be zoonotic, causing variant Creutzfeldt-Jakob disease (vCJD)
in humans and having guided protective measures for animal and human health
against animal prion diseases. Recently, partial transmissions to humanized mice
showed that the zoonotic potential of scrapie might be similar to c-BSE. We here
report the direct transmission of a natural classical scrapie isolate to
cynomolgus macaque, a highly relevant model for human prion diseases, after a
10-year silent incubation period, with features similar to those reported for
human cases of sporadic CJD. Scrapie is thus actually transmissible to primates
with incubation periods compatible with their life expectancy, although fourfold
longer than BSE. Long-term experimental transmission studies are necessary to
better assess the zoonotic potential of other prion diseases with high
prevalence, notably Chronic Wasting Disease of deer and elk and atypical/Nor98
scrapie.
snip...
In addition to previous studies on scrapie transmission to primate1,8,9 and
the recently published study on transgenic humanized mice13, our results
constitute new evidence for recommending that the potential risk of scrapie for
human health should not be dismissed. Indeed, human PrP transgenic mice and
primates are the most relevant models for investigating the human transmission
barrier. To what extent such models are informative for measuring the zoonotic
potential of an animal TSE under field exposure conditions is unknown. During
the past decades, many protective measures have been successfully implemented to
protect cattle from the spread of c-BSE, and some of these measures have been
extended to sheep and goats to protect from scrapie according to the principle
of precaution. Since cases of c-BSE have greatly reduced in number, those
protective measures are currently being challenged and relaxed in the absence of
other known zoonotic animal prion disease. We recommend that risk managers
should be aware of the long term potential risk to human health of at least
certain scrapie isolates, notably for lymphotropic strains like the classical
scrapie strain used in the current study. Relatively high amounts of infectivity
in peripheral lymphoid organs in animals infected with these strains could lead
to contamination of food products produced for human consumption. Efforts should
also be maintained to further assess the zoonotic potential of other animal
prion strains in long-term studies, notably lymphotropic strains with high
prevalence like CWD, which is spreading across North America, and atypical/Nor98
scrapie (Nor98)50 that was first detected in the past two decades and now
represents approximately half of all reported cases of prion diseases in small
ruminants worldwide, including territories previously considered as scrapie
free. Even if the prevailing view is that sporadic CJD is due to the spontaneous
formation of CJD prions, it remains possible that its apparent sporadic nature
may, at least in part, result from our limited capacity to identify an
environmental origin.
***Moreover, sporadic disease has never been observed in breeding colonies
or primate research laboratories, most notably among hundreds of animals over
several decades of study at the National Institutes of Health25, and in nearly
twenty older animals continuously housed in our own facility.***
2015
O.05: Transmission of prions to primates after extended silent incubation
periods: Implications for BSE and scrapie risk assessment in human populations
Emmanuel Comoy, Jacqueline Mikol, Valerie Durand, Sophie Luccantoni,
Evelyne Correia, Nathalie Lescoutra, Capucine Dehen, and Jean-Philippe Deslys
Atomic Energy Commission; Fontenay-aux-Roses, France
Prion diseases (PD) are the unique neurodegenerative proteinopathies
reputed to be transmissible under field conditions since decades. The
transmission of Bovine Spongiform Encephalopathy (BSE) to humans evidenced that
an animal PD might be zoonotic under appropriate conditions. Contrarily, in the
absence of obvious (epidemiological or experimental) elements supporting a
transmission or genetic predispositions, PD, like the other proteinopathies, are
reputed to occur spontaneously (atpical animal prion strains, sporadic CJD
summing 80% of human prion cases). Non-human primate models provided the first
evidences supporting the transmissibiity of human prion strains and the zoonotic
potential of BSE. Among them, cynomolgus macaques brought major information for
BSE risk assessment for human health (Chen, 2014), according to their
phylogenetic proximity to humans and extended lifetime. We used this model to
assess the zoonotic potential of other animal PD from bovine, ovine and cervid
origins even after very long silent incubation periods.
*** We recently observed the direct transmission of a natural classical
scrapie isolate to macaque after a 10-year silent incubation period,
***with features similar to some reported for human cases of sporadic CJD,
albeit requiring fourfold long incubation than BSE. Scrapie, as recently evoked
in humanized mice (Cassard, 2014),
***is the third potentially zoonotic PD (with BSE and L-type BSE),
***thus questioning the origin of human sporadic cases. We will present an
updated panorama of our different transmission studies and discuss the
implications of such extended incubation periods on risk assessment of animal PD
for human health.
===============
***thus questioning the origin of human sporadic cases***
===============
***our findings suggest that possible transmission risk of H-type BSE to
sheep and human. Bioassay will be required to determine whether the PMCA
products are infectious to these animals.
==============
CWD TSE PRION HUMAN ZOONOSIS POTENTIAL, has it already happened, and being
masked as sporadic CJD? and what about iatrogenic, or the pass if forward,
friendly fire mode of transmission of cwd to humans, same thing, sporadic cjd
?
*** WDA 2016 NEW YORK ***
We found that CWD adapts to a new host more readily than BSE and that human
PrP was unexpectedly prone to misfolding by CWD prions. In addition, we
investigated the role of specific regions of the bovine, deer and human PrP
protein in resistance to conversion by prions from another species. We have
concluded that the human protein has a region that confers unusual
susceptibility to conversion by CWD prions.
Student Presentations Session 2
The species barriers and public health threat of CWD and BSE prions
Ms. Kristen Davenport1, Dr. Davin Henderson1, Dr. Candace Mathiason1, Dr.
Edward Hoover1 1Colorado State University
Chronic wasting disease (CWD) is spreading rapidly through cervid
populations in the USA. Bovine spongiform encephalopathy (BSE, mad cow disease)
arose in the 1980s because cattle were fed recycled animal protein. These and
other prion diseases are caused by abnormal folding of the normal prion protein
(PrP) into a disease causing form (PrPd), which is pathogenic to nervous system
cells and can cause subsequent PrP to misfold. CWD spreads among cervids very
efficiently, but it has not yet infected humans. On the other hand, BSE was
spread only when cattle consumed infected bovine or ovine tissue, but did infect
humans and other species. The objective of this research is to understand the
role of PrP structure in cross-species infection by CWD and BSE. To study the
propensity of each species’ PrP to be induced to misfold by the presence of PrPd
from verious species, we have used an in vitro system that permits detection of
PrPd in real-time. We measured the conversion efficiency of various combinations
of PrPd seeds and PrP substrate combinations. We observed the cross-species
behavior of CWD and BSE, in addition to feline-adapted CWD and BSE. We found
that CWD adapts to a new host more readily than BSE and that human PrP was
unexpectedly prone to misfolding by CWD prions. In addition, we investigated the
role of specific regions of the bovine, deer and human PrP protein in resistance
to conversion by prions from another species. We have concluded that the human
protein has a region that confers unusual susceptibility to conversion by CWD
prions. CWD is unique among prion diseases in its rapid spread in natural
populations. BSE prions are essentially unaltered upon passage to a new species,
while CWD adapts to the new species. This adaptation has consequences for
surveillance of humans exposed to CWD.
Wildlife Disease Risk Communication Research Contributes to Wildlife Trust
Administration Exploring perceptions about chronic wasting disease risks among
wildlife and agriculture professionals and stakeholders
Ms. Alyssa Wetterau1, Dr. Krysten Schuler1, Dr. Elizabeth Bunting1, Dr.
Hussni Mohammed1 1Cornell University
Chronic wasting disease (CWD) is a fatal disease of North American
Cervidae. New York State (NYS, USA) successfully managed an outbreak of CWD in
2005 in both captive and wild white-tailed deer (Odocoileus virginianus) with no
reoccurrence of the disease as of 2015. To attain maximum compliance and
efficacy of management actions for prevention of CWD entry, understanding the
varied risk perceptions will allow for targeted, proactive communication efforts
to address divergences between expert-derived risk assessments and stakeholder
risk perceptions. We examined perceived risks associated with CWD introduction
and exposure among agricultural and wildlife agency professionals within and
outside of NYS, as well as stakeholder groups (e.g., hunters and captive cervid
owners). We measured perceived risk using a risk assessment questionnaire online
via Qualtrics survey software and evaluated similarities within, as well as
differences in, perception among participant groups. New York State biologists
employed by the Department of Environmental Conservation and independent non-NYS
wildlife and agricultural professionals thought CWD risks associated with
captive cervids were high; captive cervid owners thought risks for wild and
captive cervids were low. Agriculture and wildlife professional groups agreed on
general risk perceptions. We ranked 15 individual risk hazards into high and low
medium categories based on all responses. Differences between groups were most
evident in hypothetical disease pathways. Any pathway involving inter-state
import of live cervids received high ranking for all groups except captive
cervid owners. Comparatively low risk perceptions by captive cervid operators
may stem from misinformation, lack of understanding of testing programs, and
indemnity payments for animal depopulation. Communication and education directed
at areas of disagreement may facilitate effective disease prevention and
management.
* No evaluation of determination of CWD risk is required for alternative
livestock or captive wildlife shipped directly to slaughter or to a biosecure
facility approved by the Division and the Dept. of Agriculture.
*** We found that CWD adapts to a new host more readily than BSE and that
human PrP was unexpectedly prone to misfolding by CWD prions. In addition, we
investigated the role of specific regions of the bovine, deer and human PrP
protein in resistance to conversion by prions from another species. We have
concluded that the human protein has a region that confers unusual
susceptibility to conversion by CWD prions. CWD is unique among prion diseases
in its rapid spread in natural populations. BSE prions are essentially unaltered
upon passage to a new species, while CWD adapts to the new species. This
adaptation has consequences for surveillance of humans exposed to CWD. ***
PRION 2016 TOKYO
Zoonotic Potential of CWD Prions: An Update
Ignazio Cali1, Liuting Qing1, Jue Yuan1, Shenghai Huang2, Diane Kofskey1,3,
Nicholas Maurer1, Debbie McKenzie4, Jiri Safar1,3,5, Wenquan Zou1,3,5,6,
Pierluigi Gambetti1, Qingzhong Kong1,5,6
1Department of Pathology, 3National Prion Disease Pathology Surveillance
Center, 5Department of Neurology, 6National Center for Regenerative Medicine,
Case Western Reserve University, Cleveland, OH 44106, USA.
4Department of Biological Sciences and Center for Prions and Protein
Folding Diseases, University of Alberta, Edmonton, Alberta, Canada,
2Encore Health Resources, 1331 Lamar St, Houston, TX 77010
Chronic wasting disease (CWD) is a widespread and highly transmissible
prion disease in free-ranging and captive cervid species in North America. The
zoonotic potential of CWD prions is a serious public health concern, but the
susceptibility of human CNS and peripheral organs to CWD prions remains largely
unresolved. We reported earlier that peripheral and CNS infections were detected
in transgenic mice expressing human PrP129M or PrP129V. Here we will present an
update on this project, including evidence for strain dependence and influence
of cervid PrP polymorphisms on CWD zoonosis as well as the characteristics of
experimental human CWD prions.
PRION 2016 TOKYO
In Conjunction with Asia Pacific Prion Symposium 2016
PRION 2016 Tokyo
Prion 2016
Prion 2016
Purchase options Price * Issue Purchase USD 198.00
Cervid to human prion transmission
Kong, Qingzhong
Case Western Reserve University, Cleveland, OH, United States
Abstract
Prion disease is transmissible and invariably fatal. Chronic wasting
disease (CWD) is the prion disease affecting deer, elk and moose, and it is a
widespread and expanding epidemic affecting 22 US States and 2 Canadian
provinces so far. CWD poses the most serious zoonotic prion transmission risks
in North America because of huge venison consumption (>6 million deer/elk
hunted and consumed annually in the USA alone), significant prion infectivity in
muscles and other tissues/fluids from CWD-affected cervids, and usually high
levels of individual exposure to CWD resulting from consumption of the affected
animal among often just family and friends. However, we still do not know
whether CWD prions can infect humans in the brain or peripheral tissues or
whether clinical/asymptomatic CWD zoonosis has already occurred, and we have no
essays to reliably detect CWD infection in humans. We hypothesize that:
(1) The classic CWD prion strain can infect humans at low levels in the
brain and peripheral lymphoid tissues;
(2) The cervid-to-human transmission barrier is dependent on the cervid
prion strain and influenced by the host (human) prion protein (PrP) primary
sequence;
(3) Reliable essays can be established to detect CWD infection in
humans;and
(4) CWD transmission to humans has already occurred. We will test these
hypotheses in 4 Aims using transgenic (Tg) mouse models and complementary in
vitro approaches.
Aim 1 will prove that the classical CWD strain may infect humans in brain
or peripheral lymphoid tissues at low levels by conducting systemic bioassays in
a set of "humanized" Tg mouse lines expressing common human PrP variants using a
number of CWD isolates at varying doses and routes. Experimental "human CWD"
samples will also be generated for Aim 3.
Aim 2 will test the hypothesis that the cervid-to-human prion transmission
barrier is dependent on prion strain and influenced by the host (human) PrP
sequence by examining and comparing the transmission efficiency and phenotypes
of several atypical/unusual CWD isolates/strains as well as a few prion strains
from other species that have adapted to cervid PrP sequence, utilizing the same
panel of humanized Tg mouse lines as in Aim 1.
Aim 3 will establish reliable essays for detection and surveillance of CWD
infection in humans by examining in details the clinical, pathological,
biochemical and in vitro seeding properties of existing and future experimental
"human CWD" samples generated from Aims 1-2 and compare them with those of
common sporadic human Creutzfeldt-Jakob disease (sCJD) prions.
Aim 4 will attempt to detect clinical CWD-affected human cases by examining
a significant number of brain samples from prion-affected human subjects in the
USA and Canada who have consumed venison from CWD-endemic areas utilizing the
criteria and essays established in Aim 3. The findings from this proposal will
greatly advance our understandings on the potential and characteristics of
cervid prion transmission in humans, establish reliable essays for CWD zoonosis
and potentially discover the first case(s) of CWD infection in humans.
Public Health Relevance There are significant and increasing human exposure
to cervid prions because chronic wasting disease (CWD, a widespread and highly
infectious prion disease among deer and elk in North America) continues
spreading and consumption of venison remains popular, but our understanding on
cervid-to-human prion transmission is still very limited, raising public health
concerns. This proposal aims to define the zoonotic risks of cervid prions and
set up and apply essays to detect CWD zoonosis using mouse models and in vitro
methods. The findings will greatly expand our knowledge on the potentials and
characteristics of cervid prion transmission in humans, establish reliable
essays for such infections and may discover the first case(s) of CWD infection
in humans.
Funding Agency Agency National Institute of Health (NIH)
Institute National Institute of Neurological Disorders and Stroke (NINDS)
Type Research Project (R01)
Project # 1R01NS088604-01A1
Application # 9037884
Study Section Cellular and Molecular Biology of Neurodegeneration Study
Section (CMND)
Program Officer Wong, May
Project Start 2015-09-30
Project End 2019-07-31
Budget Start 2015-09-30
Budget End 2016-07-31
Support Year 1
Fiscal Year 2015
Total Cost $337,507
Indirect Cost $118,756
Institution
Name Case Western Reserve University
Department Pathology
Type Schools of Medicine
DUNS # 077758407
City Cleveland
State OH
Country United States
Zip Code 44106
===========================================================
We hypothesize that:
(1) The classic CWD prion strain can infect humans at low levels in the
brain and peripheral lymphoid tissues;
(2) The cervid-to-human transmission barrier is dependent on the cervid
prion strain and influenced by the host (human) prion protein (PrP) primary
sequence;
(3) Reliable essays can be established to detect CWD infection in
humans;and
(4) *** CWD transmission to humans has already occurred. *** We will test
these hypotheses in 4 Aims using transgenic (Tg) mouse models and complementary
in vitro approaches.
============================================================
Key Molecular Mechanisms of TSEs
Zabel, Mark D.
Colorado State University-Fort Collins, Fort Collins, CO, United States
Abstract Prion diseases, or transmissible spongiform encephalopathies (TSEs),
are fatal neurodegenerative diseases affecting humans, cervids, bovids, and
ovids. The absolute requirement of PrPC expression to generate prion diseases
and the lack of instructional nucleic acid define prions as unique infectious
agents. Prions exhibit species-specific tropism, inferring that unique prion
strains exist that preferentially infct certain host species and confront
transmission barriers to heterologous host species. However, transmission
barriers are not absolute. Scientific consensus agrees that the sheep TSE
scrapie probably breached the transmission barrier to cattle causing bovine
spongiform encephalopathy that subsequently breached the human transmission
barrier and likely caused several hundred deaths by a new-variant form of the
human TSE Creutzfeldt-Jakob disease in the UK and Europe. The impact to human
health, emotion and economies can still be felt in areas like farming, blood and
organ donations and the threat of a latent TSE epidemic. This precedent raises
the real possibility of other TSEs, like chronic wasting disease of cervids,
overcoming similar human transmission barriers. A groundbreaking discovery made
last year revealed that mice infected with heterologous prion strains facing
significant transmission barriers replicated prions far more readily in spleens
than brains6. Furthermore, these splenic prions exhibited weakened transmission
barriers and expanded host ranges compared to neurogenic prions. These data
question conventional wisdom of avoiding neural tissue to avoid prion
xenotransmission, when more promiscuous prions may lurk in extraneural tissues.
Data derived from work previously funded by NIH demonstrate that Complement
receptors CD21/35 bind prions and high density PrPC and differentially impact
prion disease depending on the prion isolate or strain used. Recent advances in
live animal and whole organ imaging have led us to generate preliminary data to
support novel, innovative approaches to assessing prion capture and transport.
We plan to test our unifying hypothesis for this proposal that CD21/35 control
the processes of peripheral prion capture, transport, strain selection and
xenotransmission in the following specific aims. 1. Assess the role of CD21/35
in splenic prion strain selection and host range expansion. 2. Determine whether
CD21/35 and C1q differentially bind distinct prion strains 3. Monitor the
effects of CD21/35 on prion trafficking in real time and space 4. Assess the
role of CD21/35 in incunabular prion trafficking
Public Health Relevance Transmissible spongiform encephalopathies, or prion
diseases, are devastating illnesses that greatly impact public health,
agriculture and wildlife in North America and around the world. The impact to
human health, emotion and economies can still be felt in areas like farming,
blood and organ donations and the threat of a latent TSE epidemic. This
precedent raises the real possibility of other TSEs, like chronic wasting
disease (CWD) of cervids, overcoming similar human transmission barriers. Early
this year Canada reported its first case of BSE in over a decade audits first
case of CWD in farmed elk in three years, underscoring the need for continued
vigilance and research. Identifying mechanisms of transmission and zoonoses
remains an extremely important and intense area of research that will benefit
human and other animal populations.
Funding Agency Agency National Institute of Health (NIH)
Institute National Institute of Allergy and Infectious Diseases (NIAID)
Type High Priority, Short Term Project Award (R56)
Project # 1R56AI122273-01A1
Application # 9211114
Study Section Cellular and Molecular Biology of Neurodegeneration Study
Section (CMND)
Program Officer Beisel, Christopher E
Project Start 2016-02-16
Project End 2017-01-31
Budget Start 2016-02-16
Budget End 2017-01-31
Support Year 1
Fiscal Year 2016
Total Cost
Indirect Cost Institution Name Colorado State University-Fort Collins
Department Microbiology/Immun/Virology
Type Schools of Veterinary Medicine
DUNS # 785979618 City Fort Collins
State CO
Country United States
Zip Code 80523
PMCA Detection of CWD Infection in Cervid and Non-Cervid Species
Hoover, Edward Arthur
Colorado State University-Fort Collins, Fort Collins, CO, United States
Abstract Chronic wasting disease (CWD) of deer and elk is an emerging highly
transmissible prion disease now recognized in 18 States, 2 Canadian provinces,
and Korea. We have shown that Infected deer harbor and shed high levels of
infectious prions in saliva, blood, urine, and feces, and in the tissues
generating those body fluids and excreta, thereby leading to facile transmission
by direct contact and environmental contamination. We have also shown that CWD
can infect some non-cervid species, thus the potential risk CWD represents to
domestic animal species and to humans remains unknown. Whether prions borne in
blood, saliva, nasal fluids, milk, or excreta are generated or modified in the
proximate peripheral tissue sites, may differ in subtle ways from those
generated in brain, or may be adapted for mucosal infection remain open
questions. The increasing parallels in the pathogenesis between prion diseases
and human neurodegenerative conditions, such as Alzheimer's and Parkinson's
diseases, add relevance to CWD as a transmissible protein misfolding disease.
The overall goal of this work is to elucidate the process of CWD prion
transmission from mucosal secretory and excretory tissue sites by addressing
these questions: (a) What are the kinetics and magnitude of CWD prion shedding
post-exposure? (b) Are excreted prions biochemically distinct, or not, from
those in the CNS? (c) Are peripheral epithelial or CNS tissues, or both, the
source of excreted prions? and (d) Are excreted prions adapted for horizontal
transmission via natural/trans-mucosal routes? The specific aims of this
proposal are: (1) To determine the onset and consistency of CWD prion shedding
in deer and cervidized mice; (2); To compare the biochemical and biophysical
properties of excretory vs. CNS prions; (3) To determine the capacity of
peripheral tissues to support replication of CWD prions; (4) To determine the
protease- sensitive infectious fraction of excreted vs. CNS prions; and (5) To
compare the mucosal infectivity of excretory vs. CNS prions. Understanding the
mechanisms that enable efficient prion dissemination and shedding will help
elucidate how horizontally transmissible prions evolve and succeed, and is the
basis of this proposal. Understanding how infectious misfolded proteins (prions)
are generated, trafficked, shed, and transmitted will aid in preventing,
treating, and managing the risks associated with these agents and the diseases
they cause.
Public Health Relevance Chronic wasting disease (CWD) of deer and elk is an
emergent highly transmissible prion disease now recognized throughout the USA as
well as in Canada and Korea. We have shown that infected deer harbor and shed
high levels of infectious prions in saliva, blood, urine, and feces thereby
leading to transmission by direct contact and environmental contamination. In
that our studies have also shown that CWD can infect some non-cervid species,
the potential risk CWD may represents to domestic animal species and humans
remains unknown. The increasing parallels in the development of major human
neurodegenerative conditions, such as Alzheimer's and Parkinson's diseases, and
prion diseases add relevance to CWD as a model of a transmissible protein
misfolding disease. Understanding how infectious misfolded proteins (prions) are
generated and transmitted will aid in interrupting, treating, and managing the
risks associated with these agents and the diseases they cause.
Funding Agency Agency National Institute of Health (NIH)
Institute National Institute of Neurological Disorders and Stroke (NINDS)
Type Research Project (R01)
Project # 4R01NS061902-07
Application # 9010980
Study Section Cellular and Molecular Biology of Neurodegeneration Study
Section (CMND)
Program Officer Wong, May Project Start 2009-09-30
Project End 2018-02-28
Budget Start 2016-03-01
Budget End 2017-02-28
Support Year 7
Fiscal Year 2016
Total Cost $409,868
Indirect Cost $134,234 Institution Name Colorado State University-Fort
Collins
Department Microbiology/Immun/Virology
Type Schools of Veterinary Medicine
DUNS # 785979618 City Fort Collins
State CO
Country United States
Zip Code 80523
LOOKING FOR CWD IN HUMANS AS nvCJD or as an ATYPICAL CJD, LOOKING IN ALL
THE WRONG PLACES $$$
*** These results would seem to suggest that CWD does indeed have zoonotic
potential, at least as judged by the compatibility of CWD prions and their human
PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests
that if zoonotic CWD occurred, it would most likely effect those of the PRNP
codon 129-MM genotype and that the PrPres type would be similar to that found in
the most common subtype of sCJD (MM1).***
PRION 2015 CONFERENCE FT. COLLINS CWD RISK FACTORS TO HUMANS
*** LATE-BREAKING ABSTRACTS PRION 2015 CONFERENCE ***
O18
Zoonotic Potential of CWD Prions
Liuting Qing1, Ignazio Cali1,2, Jue Yuan1, Shenghai Huang3, Diane Kofskey1,
Pierluigi Gambetti1, Wenquan Zou1, Qingzhong Kong1 1Case Western Reserve
University, Cleveland, Ohio, USA, 2Second University of Naples, Naples, Italy,
3Encore Health Resources, Houston, Texas, USA
*** These results indicate that the CWD prion has the potential to infect
human CNS and peripheral lymphoid tissues and that there might be asymptomatic
human carriers of CWD infection.
==================
***These results indicate that the CWD prion has the potential to infect
human CNS and peripheral lymphoid tissues and that there might be asymptomatic
human carriers of CWD infection.***
==================
P.105: RT-QuIC models trans-species prion transmission
Kristen Davenport, Davin Henderson, Candace Mathiason, and Edward Hoover
Prion Research Center; Colorado State University; Fort Collins, CO USA
Conversely, FSE maintained sufficient BSE characteristics to more
efficiently convert bovine rPrP than feline rPrP. Additionally, human rPrP was
competent for conversion by CWD and fCWD.
***This insinuates that, at the level of protein:protein interactions, the
barrier preventing transmission of CWD to humans is less robust than previously
estimated.
================
***This insinuates that, at the level of protein:protein interactions, the
barrier preventing transmission of CWD to humans is less robust than previously
estimated.***
================
*** PRICE OF CWD TSE PRION POKER GOES UP 2014 ***
Transmissible Spongiform Encephalopathy TSE PRION update January 2, 2014
*** chronic wasting disease, there was no absolute barrier to conversion of
the human prion protein.
*** Furthermore, the form of human PrPres produced in this in vitro assay
when seeded with CWD, resembles that found in the most common human prion
disease, namely sCJD of the MM1 subtype.
*** These results would seem to suggest that CWD does indeed have zoonotic
potential, at least as judged by the compatibility of CWD prions and their human
PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests
that if zoonotic CWD occurred, it would most likely effect those of the PRNP
codon 129-MM genotype and that the PrPres type would be similar to that found in
the most common subtype of sCJD (MM1).***
*** The potential impact of prion diseases on human health was greatly
magnified by the recognition that interspecies transfer of BSE to humans by beef
ingestion resulted in vCJD. While changes in animal feed constituents and
slaughter practices appear to have curtailed vCJD, there is concern that CWD of
free-ranging deer and elk in the U.S. might also cross the species barrier.
Thus, consuming venison could be a source of human prion disease. Whether BSE
and CWD represent interspecies scrapie transfer or are newly arisen prion
diseases is unknown. Therefore, the possibility of transmission of prion disease
through other food animals cannot be ruled out. There is evidence that vCJD can
be transmitted through blood transfusion. There is likely a pool of unknown size
of asymptomatic individuals infected with vCJD, and there may be asymptomatic
individuals infected with the CWD equivalent. These circumstances represent a
potential threat to blood, blood products, and plasma supplies.
***********CJD REPORT 1994 increased risk for consumption of veal and
venison and lamb***********
CREUTZFELDT JAKOB DISEASE SURVEILLANCE IN THE UNITED KINGDOM THIRD ANNUAL
REPORT AUGUST 1994
Consumption of venison and veal was much less widespread among both cases
and controls. For both of these meats there was evidence of a trend with
increasing frequency of consumption being associated with increasing risk of
CJD. (not nvCJD, but sporadic CJD...tss)
These associations were largely unchanged when attention was restricted to
pairs with data obtained from relatives. ...
Table 9 presents the results of an analysis of these data.
There is STRONG evidence of an association between ‘’regular’’ veal eating
and risk of CJD (p = .0.01).
Individuals reported to eat veal on average at least once a year appear to
be at 13 TIMES THE RISK of individuals who have never eaten veal.
There is, however, a very wide confidence interval around this estimate.
There is no strong evidence that eating veal less than once per year is
associated with increased risk of CJD (p = 0.51).
The association between venison eating and risk of CJD shows similar
pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK
OF CJD (p = 0.04).
There is some evidence that risk of CJD INCREASES WITH INCREASING FREQUENCY
OF LAMB EATING (p = 0.02).
The evidence for such an association between beef eating and CJD is weaker
(p = 0.14). When only controls for whom a relative was interviewed are included,
this evidence becomes a little STRONGER (p = 0.08).
snip...
It was found that when veal was included in the model with another
exposure, the association between veal and CJD remained statistically
significant (p = < 0.05 for all exposures), while the other exposures ceased
to be statistically significant (p = > 0.05).
snip...
In conclusion, an analysis of dietary histories revealed statistical
associations between various meats/animal products and INCREASED RISK OF CJD.
When some account was taken of possible confounding, the association between
VEAL EATING AND RISK OF CJD EMERGED AS THE STRONGEST OF THESE ASSOCIATIONS
STATISTICALLY. ...
snip...
In the study in the USA, a range of foodstuffs were associated with an
increased risk of CJD, including liver consumption which was associated with an
apparent SIX-FOLD INCREASE IN THE RISK OF CJD. By comparing the data from 3
studies in relation to this particular dietary factor, the risk of liver
consumption became non-significant with an odds ratio of 1.2 (PERSONAL
COMMUNICATION, PROFESSOR A. HOFMAN. ERASMUS UNIVERSITY, ROTTERDAM). (???...TSS)
snip...see full report ;
CJD9/10022
October 1994
Mr R.N. Elmhirst Chairman British Deer Farmers Association Holly Lodge
Spencers Lane BerksWell Coventry CV7 7BZ
Dear Mr Elmhirst,
CREUTZFELDT-JAKOB DISEASE (CJD) SURVEILLANCE UNIT REPORT
Thank you for your recent letter concerning the publication of the third
annual report from the CJD Surveillance Unit. I am sorry that you are
dissatisfied with the way in which this report was published.
The Surveillance Unit is a completely independant outside body and the
Department of Health is committed to publishing their reports as soon as they
become available. In the circumstances it is not the practice to circulate the
report for comment since the findings of the report would not be amended. In
future we can ensure that the British Deer Farmers Association receives a copy
of the report in advance of publication.
The Chief Medical Officer has undertaken to keep the public fully informed
of the results of any research in respect of CJD. This report was entirely the
work of the unit and was produced completely independantly of the the
Department.
The statistical results reqarding the consumption of venison was put into
perspective in the body of the report and was not mentioned at all in the press
release. Media attention regarding this report was low key but gave a realistic
presentation of the statistical findings of the Unit. This approach to
publication was successful in that consumption of venison was highlighted only
once by the media ie. in the News at one television proqramme.
I believe that a further statement about the report, or indeed statistical
links between CJD and consumption of venison, would increase, and quite possibly
give damaging credence, to the whole issue. From the low key media reports of
which I am aware it seems unlikely that venison consumption will suffer
adversely, if at all.
Monday, May 02, 2016
*** Zoonotic Potential of CWD Prions: An Update Prion 2016 Tokyo ***
*** PRION 2014 CONFERENCE CHRONIC WASTING DISEASE CWD
*** PPo3-7: Prion Transmission from Cervids to Humans is Strain-dependent
*** Here we report that a human prion strain that had adopted the cervid
prion protein (PrP) sequence through passage in cervidized transgenic mice
efficiently infected transgenic mice expressing human PrP,
*** indicating that the species barrier from cervid to humans is prion
strain-dependent and humans can be vulnerable to novel cervid prion strains.
PPo2-27:
Generation of a Novel form of Human PrPSc by Inter-species Transmission of
Cervid Prions
*** Our findings suggest that CWD prions have the capability to infect
humans, and that this ability depends on CWD strain adaptation, implying that
the risk for human health progressively increases with the spread of CWD among
cervids.
PPo2-7:
Biochemical and Biophysical Characterization of Different CWD Isolates
*** The data presented here substantiate and expand previous reports on the
existence of different CWD strains.
Envt.07:
Pathological Prion Protein (PrPTSE) in Skeletal Muscles of Farmed and Free
Ranging White-Tailed Deer Infected with Chronic Wasting Disease
***The presence and seeding activity of PrPTSE in skeletal muscle from
CWD-infected cervids suggests prevention of such tissue in the human diet as a
precautionary measure for food safety, pending on further clarification of
whether CWD may be transmissible to humans.
>>>CHRONIC WASTING DISEASE , THERE WAS NO ABSOLUTE BARRIER TO
CONVERSION OF THE HUMAN PRION PROTEIN<<<
*** PRICE OF CWD TSE PRION POKER GOES UP 2014 ***
Transmissible Spongiform Encephalopathy TSE PRION update January 2, 2014
Wednesday, January 01, 2014
Molecular Barriers to Zoonotic Transmission of Prions
*** chronic wasting disease, there was no absolute barrier to conversion of
the human prion protein.
*** Furthermore, the form of human PrPres produced in this in vitro assay
when seeded with CWD, resembles that found in the most common human prion
disease, namely sCJD of the MM1 subtype.
Envt.07:
Pathological Prion Protein (PrPTSE) in Skeletal Muscles of Farmed and Free
Ranging White-Tailed Deer Infected with Chronic Wasting Disease
***The presence and seeding activity of PrPTSE in skeletal muscle from
CWD-infected cervids suggests prevention of such tissue in the human diet as a
precautionary measure for food safety, pending on further clarification of
whether CWD may be transmissible to humans.
Yet, it has to be noted that our assessments of PrPTSE levels in skeletal
muscles were based on findings in presumably pre- or subclinically infected
animals. Therefore, the concentration of PrPTSE in skeletal muscles of WTD with
clinically manifest CWD may possibly exceed our estimate which refers to
clinically inconspicuous animals that are more likely to enter the human food
chain. Our tissue blot findings in skeletal muscles from CWD-infected WTD would
be consistent with an anterograde spread of CWD prions via motor nerve fibres to
muscle tissue (figure 4A). Similar neural spreading pathways of muscle infection
were previously found in hamsters orally challenged with scrapie [28] and
suggested by the detection of PrPTSE in muscle fibres and muscle-associated
nerve fascicles of clinically-ill non-human primates challenged with BSE prions
[29]. Whether the absence of detectable PrPTSE in myofibers observed in our
study is a specific feature of CWD in WTD, or was due to a pre- or subclinical
stage of infection in the examined animals, remains to be established. In any
case, our observations support previous findings suggesting the precautionary
prevention of muscle tissue from CWD-infected WTD in the human diet, and
highlight the need to comprehensively elucidate of whether CWD may be
transmissible to humans. While the understanding of TSEs in cervids has made
substantial progress during the past few years, the assessment and management of
risks possibly emanating from prions in skeletal muscles of CWD-infected cervids
requires further research.
Prions in Skeletal Muscles of Deer with Chronic Wasting Disease Rachel C.
Angers1,*, Shawn R. Browning1,*,†, Tanya S. Seward2, Christina J. Sigurdson4,‡,
Michael W. Miller5, Edward A. Hoover4, Glenn C. Telling1,2,3,§ + Author
Affiliations
1 Department of Microbiology, Immunology and Molecular Genetics, University
of Kentucky, Lexington, KY 40536, USA. 2 Sanders Brown Center on Aging,
University of Kentucky, Lexington, KY 40536, USA. 3 Department of Neurology,
University of Kentucky, Lexington, KY 40536, USA. 4 Department of Microbiology,
Immunology and Pathology, Colorado State University, Fort Collins, CO 80523,
USA. 5 Colorado Division of Wildlife, Wildlife Research Center, Fort Collins, CO
80526, USA. ↵§ To whom correspondence should be addressed. E-mail:
gtell2@uky.edu ↵* These authors contributed equally to this work.
↵† Present address: Department of Infectology, Scripps Research Institute,
5353 Parkside Drive, RF-2, Jupiter, FL 33458, USA.
↵‡ Present address: Institute of Neuropathology, University of Zurich,
Schmelzbergstrasse 12, 8091 Zurich, Switzerland.
Abstract The emergence of chronic wasting disease (CWD) in deer and elk in
an increasingly wide geographic area, as well as the interspecies transmission
of bovine spongiform encephalopathy to humans in the form of variant Creutzfeldt
Jakob disease, have raised concerns about the zoonotic potential of CWD. Because
meat consumption is the most likely means of exposure, it is important to
determine whether skeletal muscle of diseased cervids contains prion
infectivity. Here bioassays in transgenic mice expressing cervid prion protein
revealed the presence of infectious prions in skeletal muscles of CWD-infected
deer, demonstrating that humans consuming or handling meat from CWD-infected
deer are at risk to prion exposure.
Exotic Meats USA Announces Urgent Statewide Recall of Elk Tenderloin
Because It May Contain Meat Derived From An Elk Confirmed To Have Chronic
Wasting Disease
Contact: Exotic Meats USA 1-800-680-4375
FOR IMMEDIATE RELEASE -- February 9, 2009 -- Exotic Meats USA of San
Antonio, TX is initiating a voluntary recall of Elk Tenderloin because it may
contain meat derived from an elk confirmed to have Chronic Wasting Disease
(CWD). The meat with production dates of December 29, 30 and 31, 2008 was
purchased from Sierra Meat Company in Reno, NV. The infected elk came from Elk
Farm LLC in Pine Island, MN and was among animals slaughtered and processed at
USDA facility Noah’s Ark Processors LLC.
Chronic Wasting Disease (CWD) is a fatal brain and nervous system disease
found in elk and deer. The disease is caused by an abnormally shaped protein
called a prion, which can damage the brain and nerves of animals in the deer
family. Currently, it is believed that the prion responsible for causing CWD in
deer and elk is not capable of infecting humans who eat deer or elk contaminated
with the prion, but the observation of animal-to-human transmission of other
prion-mediated diseases, such as bovine spongiform encephalopathy (BSE), has
raised a theoretical concern regarding the transmission of CWD from deer or elk
to humans. At the present time, FDA believes the risk of becoming ill from
eating CWD-positive elk or deer meat is remote. However, FDA strongly advises
consumers to return the product to the place of purchase, rather than disposing
of it themselves, due to environmental concerns.
Exotic Meats USA purchased 1 case of Elk Tenderloins weighing 16.9 lbs. The
Elk Tenderloin was sold from January 16 – 27, 2009. The Elk Tenderloins was
packaged in individual vacuum packs weighing approximately 3 pounds each. A
total of six packs of the Elk Tenderloins were sold to the public at the Exotic
Meats USA retail store. Consumers who still have the Elk Tenderloins should
return the product to Exotic Meats USA at 1003 NE Loop 410, San Antonio, TX
78209. Customers with concerns or questions about the Voluntary Elk Recall can
call 1-800-680-4375. The safety of our customer has always been and always will
be our number one priority.
Exotic Meats USA requests that for those customers who have products with
the production dates in question, do not consume or sell them and return them to
the point of purchase. Customers should return the product to the vendor. The
vendor should return it to the distributor and the distributor should work with
the state to decide upon how best to dispose. If the consumer is disposing of
the product he/she should consult with the local state EPA office.
#
COLORADO: Farmer's market meat recalled after testing positive for
CWD
24.dec.08 9News.com Jeffrey Wolf
Elk meat that was sold at a farmer's market is being recalled because tests
show it was infected with chronic wasting disease. The Boulder County Health
Department and Colorado Department of Public Health and Environment issued the
recall Wednesday after the meat was sold at the Boulder County Fairgrounds on
Dec. 13. Although there isn't any human health risk connected with CWD, the
recalled was issued as a precaution. About 15 elk were bought from a commercial
ranch in Colorado in early December and processed at a licensed plant. All 15
were tested for CWD and one came up positive. The labeling on the product would
have the following information: *Seller: High Wire Ranch *The type of cut:
"chuck roast," "arm roast," "flat iron," "ribeye steak," "New York steak,"
"tenderloin," "sirloin tip roast," "medallions" or "ground meat." *Processor:
Cedaredge Processing *The USDA triangle containing the number "34645" People
with questions about this meat can contact John Pape, epidemiologist at the
Colorado Department of Public Health and Environment at 303-692-2628.
COULD NOT FIND any warning or recalls on these two sites confirming their
recall of CWD infected meat. ...TSS
Wednesday, April 06, 2011
Presence and Seeding Activity of Pathological Prion Protein (PrPTSE) in
Skeletal Muscles of White-Tailed Deer Infected with Chronic Wasting Disease
Prion Infectivity in Fat of Deer with Chronic Wasting Disease
Brent Race,# Kimberly Meade-White,# Richard Race, and Bruce Chesebro* Rocky
Mountain Laboratories, 903 South 4th Street, Hamilton, Montana 59840
Received 2 June 2009/ Accepted 24 June 2009
ABSTRACT Top ABSTRACT TEXT REFERENCES
Chronic wasting disease (CWD) is a neurodegenerative prion disease of
cervids. Some animal prion diseases, such as bovine spongiform encephalopathy,
can infect humans; however, human susceptibility to CWD is unknown. In
ruminants, prion infectivity is found in central nervous system and lymphoid
tissues, with smaller amounts in intestine and muscle. In mice, prion
infectivity was recently detected in fat. Since ruminant fat is consumed by
humans and fed to animals, we determined infectivity titers in fat from two
CWD-infected deer. Deer fat devoid of muscle contained low levels of CWD
infectivity and might be a risk factor for prion infection of other
species.
snip...
The highest risk of human contact with CWD might be through exposure to
high-titer CNS tissue through accidental skin cuts or corneal contact at the
time of harvest and butchering. However, the likelihood of a human consuming fat
infected with a low titer of the CWD agent is much higher. It is impossible to
remove all the fat present within muscle tissue, and fat consumption is
inevitable when eating meat. Of additional concern is the fact that meat from an
individual deer harvested by a hunter is typically consumed over multiple meals
by the same group of people. These individuals would thus have multiple
exposures to the CWD agent over time, which might increase the chance for
transfer of infection.
In the Rocky Mountain region of North America, wild deer are subject to
predation by wolves, coyotes, bears, and mountain lions. Although canines such
as wolves and coyotes are not known to be susceptible to prion diseases, felines
definitely are susceptible to BSE (9) and might also be infected by the CWD
agent. Deer infected with the CWD agent are more likely to be killed by
predators such as mountain lions (11). Peripheral tissues, including lymph
nodes, muscle, and fat, which harbor prion infectivity are more accessible for
consumption than CNS tissue, which has the highest level of infectivity late in
disease. Therefore, infectivity in these peripheral tissues may be important in
potential cross-species CWD transmissions in the wild.
The present finding of CWD infectivity in deer fat tissue raises the
possibility that prion infectivity might also be found in fat tissue of other
infected ruminants, such as sheep and cattle, whose fat and muscle tissues are
more widely distributed in both the human and domestic-animal food chains.
Although the infectivity in fat tissues is low compared to that in the CNS,
there may be significant differences among species and between prion strains.
Two fat samples from BSE agent-infected cattle were reported to be negative by
bioassay in nontransgenic RIII mice (3, 6). However, RIII mice are
10,000-fold-less sensitive to BSE agent infection than transgenic mice
expressing bovine PrP (4). It would be prudent to carry out additional
infectivity assays on fat from BSE agent-infected cattle and scrapie
agent-infected sheep using appropriate transgenic mice or homologous species to
determine the risk from these sources.
0C7.04
North American Cervids Harbor Two Distinct CWD Strains
Authors
Angers, R. Seward, T, Napier, D., Browning, S., Miller, M., Balachandran
A., McKenzie, D., Hoover, E., Telling, G. 'University of Kentucky; Colorado
Division of Wildlife, Canadian Food Inspection Agency; University Of Wisconsin;
Colorado State University.
Content
Despite the increasing geographic distribution and host range of CWD,
little is known about the prion strain(s) responsible for distinct outbreaks of
the disease. To address this we inoculated CWD-susceptible Tg(CerPrP)1536+/·
mice with 29 individual prion samples from various geographic locations in North
America. Upon serial passage, intrastudy incubation periods consistently
diverged and clustered into two main groups with means around 210 and 290 days,
with corresponding differences in neuropathology. Prion strain designations were
utilized to distinguish between the two groups: Type I CWD mice succumbed to
disease in the 200 day range and displayed a symmetrical pattern of vacuolation
and PrPSc deposition, whereas Type II CWD mice succumbed to disease near 300
days and displayed a strikingly different pattern characterized by large local
accumulations of florid plaques distributed asymmetrically. Type II CWD bears a
striking resemblance to unstable parental scrapie strains such as 87A which give
rise to stable, short incubation period strains such as ME7 under certain
passage conditions. In agreement, the only groups of CWD-inoculated mice with
unwavering incubation periods were those with Type I CWD. Additionally,
following endpoint titration of a CWD sample, Type I CWD could be recovered only
at the lowest dilution tested (10-1), whereas Type II CWD was detected in mice
inoculated with all dilutions resulting in disease. Although strain properties
are believed to be encoded in the tertiary structure of the infectious prion
protein, we found no biochemical differences between Type I and Type II CWD. Our
data confirm the co·existence of two distinct prion strains in CWD-infected
cervids and suggest that Type II CWD is the parent strain of Type I CWD.
see page 29, and see other CWD studies ;
Sunday, November 23, 2008
PRION October 8th - 10th 2008 Book of Abstracts
ADAPTATION OF CHRONIC WASTING DISEASE (CWD) INTO HAMSTERS, EVIDENCE OF A
WISCONSIN STRAIN OF CWD
Chad Johnson1, Judd Aiken2,3,4 and Debbie McKenzie4,5 1 Department of
Comparative Biosciences, University of Wisconsin, Madison WI, USA 53706 2
Department of Agriculture, Food and Nutritional Sciences, 3 Alberta Veterinary
Research Institute, 4.Center for Prions and Protein Folding Diseases, 5
Department of Biological Sciences, University of Alberta, Edmonton AB, Canada
T6G 2P5
The identification and characterization of prion strains is increasingly
important for the diagnosis and biological definition of these infectious
pathogens. Although well-established in scrapie and, more recently, in BSE,
comparatively little is known about the possibility of prion strains in chronic
wasting disease (CWD), a disease affecting free ranging and captive cervids,
primarily in North America. We have identified prion protein variants in the
white-tailed deer population and demonstrated that Prnp genotype affects the
susceptibility/disease progression of white-tailed deer to CWD agent. The
existence of cervid prion protein variants raises the likelihood of distinct CWD
strains. Small rodent models are a useful means of identifying prion strains. We
intracerebrally inoculated hamsters with brain homogenates and phosphotungstate
concentrated preparations from CWD positive hunter-harvested (Wisconsin CWD
endemic area) and experimentally infected deer of known Prnp genotypes. These
transmission studies resulted in clinical presentation in primary passage of
concentrated CWD prions. Subclinical infection was established with the other
primary passages based on the detection of PrPCWD in the brains of hamsters and
the successful disease transmission upon second passage. Second and third
passage data, when compared to transmission studies using different CWD inocula
(Raymond et al., 2007) indicate that the CWD agent present in the Wisconsin
white-tailed deer population is different than the strain(s) present in elk,
mule-deer and white-tailed deer from the western United States endemic
region.
*** Infectious agent of sheep scrapie may persist in the environment for at
least 16 years ***
Gudmundur Georgsson1, Sigurdur Sigurdarson2 and Paul Brown3
Friday, August 14, 2015
*** Susceptibility of cattle to the agent of chronic wasting disease from
elk after intracranial inoculation ***
Saturday, May 28, 2016
*** Infection and detection of PrPCWD in soil from CWD infected farm in
Korea Prion 2016 Tokyo ***
SNIP...SEE FULL TEXT ;
*** Calling Canadian beef unsafe is like calling your twin sister ugly,"
Dopp said.
Thursday, August 25, 2016
*** FSIS Green Bay Dressed Beef Recalls Beef Products Due To Possible
Specified Risk Materials Contamination the most high risk materials for BSE TSE
PRION AKA MAD COW TYPE DISEASE ***
Friday, August 26, 2016
*** Journal Journal of Toxicology and Environmental Health, Part A Volume
79, 2016 - Issue 16-17 Prion Research in Perspective IV CANADA BSE CWD SCRAPIE
CJD TSE Prion Disease
Thursday, April 14, 2016
Arizona 22 year old diagnosed with Creutzfeldt Jakob Disease CJD
Thursday, January 15, 2015
41-year-old Navy Commander with sporadic Creutzfeldt–Jakob disease CJD TSE
Prion: Case Report
Saturday, January 17, 2015
*** Becky Lockhart 46, Utah’s first female House speaker, dies diagnosed
with the extremely rare Creutzfeldt-Jakob disease
Saturday, December 12, 2015
CREUTZFELDT JAKOB DISEASE CJD TSE PRION REPORT DECEMBER 14, 2015
Sunday, August 21, 2016
Kay Ellen Roedl Schwister Deceased August 7, 2016 at the age of 53 with
Creutzfeldt-Jakob disease CJD TSE Prion spontaneous sporadic, zoonosis, or
iatrogenic?
Monday, August 22, 2016
CREUTZFELDT JAKOB DISEASE USA 2015 SPORADIC CJD TOTAL FIGURES REACHES
HIGHEST ANNUAL COUNT TO DATE AT 239 CONFIRMED CASES
*** Evidence That Transmissible Mink Encephalopathy Results from Feeding
Infected Cattle ***
Over the next 8-10 weeks, approximately 40% of all the adult mink on the
farm died from TME.
snip...
The rancher was a ''dead stock'' feeder using mostly (>95%) downer or
dead dairy cattle...
In Confidence - Perceptions of unconventional slow virus diseases of
animals in the USA - APRIL-MAY 1989 - G A H Wells
3. Prof. A. Robertson gave a brief account of BSE. The US approach was to
accord it a very low profile indeed. Dr. A Thiermann showed the picture in the
''Independent'' with cattle being incinerated and thought this was a fanatical
incident to be avoided in the US at all costs. ...
”The occurrence of CWD must be viewed against the contest of the locations
in which it occurred. It was an incidental and unwelcome complication of the
respective wildlife research programmes. Despite it’s subsequent recognition as
a new disease of cervids, therefore justifying direct investigation, no specific
research funding was forthcoming. The USDA veiwed it as a wildlife problem and
consequently not their province!” ...page 26.
Monday, August 22, 2016
CREUTZFELDT JAKOB DISEASE USA 2015 SPORADIC CJD TOTAL FIGURES REACHES
HIGHEST ANNUAL COUNT TO DATE AT 239 CONFIRMED CASES
Tuesday, September 06, 2016
A comparison of classical and H-type bovine spongiform encephalopathy
associated with E211K prion protein polymorphism in wild type and EK211 cattle
following intracranial inoculation
Monday, September 05, 2016
*** Pathological features of chronic wasting disease in reindeer and
demonstration of horizontal transmission Major Findings for Norway ***
see more here ;
Monday, September 05, 2016
*** Pathological features of chronic wasting disease in reindeer and
demonstration of horizontal transmission Major Findings for Norway ***
Wednesday, September 7, 2016
*** An assessment of the long-term persistence of prion infectivity in
aquatic environments
Friday, September 02, 2016
*** Chronic Wasting Disease Drives Population Decline of White-Tailed
Deer
Monday, August 29, 2016
*** NWHC USGS CHRONIC WASTING DISEASE CWD TSE PRION UPDATE
Thursday, August 18, 2016
*** PROCEEDINGS ONE HUNDRED AND Nineteenth ANNUAL MEETING of the USAHA BSE,
CWD, SCRAPIE, PORCINE TSE PRION October 22 28, 2015 ***
Sunday, August 28, 2016
CONFIDENTIAL
Transmissible Spongiform Encephalopathy TSE Prion and how Politics and
Greed by the Industry spread madcow type diseases from species to species and
around the globe
TSE PRIONS AKA MAD COW TYPE DISEASE, LIONS AND TIGERS AND BEARS, OH MY!
Terry S. Singeltary Sr.
Bacliff, Texas USA 77518
0 Comments:
Post a Comment
Subscribe to Post Comments [Atom]
<< Home