Monday, August 30, 2010

Examination of the Offspring of a Japanese Cow Affected with L-Type Bovine Spongiform Encephalopathy

Examination of the Offspring of a Japanese Cow Affected with L-Type Bovine Spongiform Encephalopathy

Takashi YOKOYAMA1), Hiroyuki OKADA1), Yuichi MURAYAMA1), Kentaro MASUJIN1), Yoshifumi IWAMARU1) and Shirou MOHRI1)

1) Prion Disease Research Center, National Institute of Animal Health

(Received 2-Jun-2010) (Accepted 11-Aug-2010)

ABSTRACT. The offspring of a beef cow affected with L-type bovine spongiform encephalopathy (L-BSE) was kept in a pen at a BSE-dedicated animal facility till the offspring was 48 months of age. The steer was then euthanized and subjected to a test for BSE. The abnormal isoform of the prion protein was not detected in the brain and spinal cord of the steer. Transmission of L-BSE was not observed during 4 years of observation, though the steer was born when the dam was in the terminal stages of the disease.

KEY WORDS: atypical BSE, L-BSE, offspring, prion

Bovine spongiform encephalopathy (BSE), a neurodegenerative 29 disorder, is caused by prions [15]. Use of prion-contaminated meat and bone meal is known to cause a BSE pandemic. Horizontal transmission of BSE between cattle has not been observed, and there is little data to support the existence of maternal transmission [14]. The incidence of BSE has declined owing to disease-control programs such as feed bans. These programs are based on epidemiological and/or experimental data obtained for classical BSE (C-BSE). However, different phenotypes of BSE—designated as atypical BSEs—have been detected in aged cattle. Atypical BSEs are classified into 2 forms on the basis of the molecular weight of the proteinase K-resistant core fragment of the abnormal prion protein PrPSc: L-type BSE (L-BSE) or bovine amyloidotic spongiform encephalopathy and H-type BSE (H-BSE) [3, 5]. Several studies have indicated that L-BSE and H-BSE are caused by different prions with varying biological characteristics [4, 11, 12]. A limited number of atypical BSE cases have been reported, and sporadic occurrence may be supposed as their origin [2]. Therefore, greater attention should be paid to BSE control programs.

The second Japanese case of atypical BSE was reported in a 14-year-old beef cow (BSE/JP24) in 2006. The PrPSc glycoprofile and existence of prion protein (PrP) plaques were different from those observed in C-BSE [7]. Although this case was firstly reported as L-type-like BSE [6], further study showed it was similar to European L-BSE. Thereafter, this case was referred as L-BSE [9]. Cattle [6] and mice overexpressing bovine PrP [12] that had been experimentally challenged with L-BSE had a shorter incubation period and exhibited more severe spongiform changes in the brain than the mice and cattle that had been experimentally challenged with C-BSE. These results suggest that the L-BSE prion exhibits greater virulence in cattle than the C-BSE prion.

In this study, the dam (BSE/JP24) developed astasia because of dislocation of the hip and a fracture in the hindlimb. The cow delivered after 7 days, that is, 17 days before the due date; therefore, artificial delivery was performed. The owner reared the calf, but the mother cow was slaughtered 4 days after delivery and found to be affected with BSE by a routine BSE test at the abattoir. The time course of this case is shown in Table 1.

The offspring was placed in a BSE cohort and transported to the National Institute of Animal Health, where it was kept in an isolated pen at the animal facility dedicated for experimental cattle with BSE; the offspring was used in a cohort study to determine whether maternal transmission occurs in L-BSE. The study was approved by the Animal Ethics Committee and the Animal Care and Use Committee of the National Institute of Animal Health. The calf had an injured forelimb and a weak constitution. When the animal was 48 months old, its health deteriorated because of chronic rumen impaction, leading to a bad prognosis; subsequently, the animal was euthanized from the ethical viewpoint and dissected.

The necropsy was performed in a dissection room located in a biosafety level 3 facility and was conducted according to the regulations laid down for handling cattle affected with BSE. The rest of the carcass was completely destroyed by incineration. The pattern of PrPSc deposition in L-BSE-affected cattle is different from that observed in C-BSE-affected cattle, and most of the PrPSc in the L-BSE-affected cattle is detected in the frontal cortex and olfactory bulb [5, 6]. Therefore, we examined tissue samples from the medulla oblongata at the obex level, pons, cerebellum, cerebral cortex, olfactory bulb, and 2 regions of the spinal cord. These samples were subjected to confirmatory BSE testing (western blotting and immunohistochemistry). PrPSc was not detected in the brain and spinal cord (Fig. 1). Pathological analysis did not show any PrPSc accumulation and spongiform changes in the brain (data not shown). Although PrPSc may have been detected if the offspring was observed for a longer time, we thought that the offspring was not affected with L-BSE; this supported the result of absence of maternal transmission in this case.

Maternal transmission is thought to be the cause of increased incidence of scrapie in the offspring of scrapie-affected sheep [8]. In contrast, modeling studies indicated that the cumulative risk of maternal transmission of BSE is approximately 2%, but with a confidence interval including zero [14]. Further, the data of a cohort study suggested that the risk of development of BSE in the offspring increases for calves born closer to the onset of disease in the dam [16]. In BSE or scrapie, maternal transmission implies both horizontal (peri- and postnatal) and vertical (prenatal) transmission of prions from mother to offspring, and the precise mechanism remains to be elucidated. In this case, the offspring was born when the dam was considered in a terminal stage of the disease. The steer was kept in a pen but developed astasia because of health deterioration at the age of 48 months. Although this observation period was insufficient, it was thought that maternal transmission did not occur in this case.

The PrPSc distribution pattern in cattle infected with BSE is completely different from that in sheep with scrapie in whom PrPSc was detected in the lymphoid tissues and placenta (13). Scrapie transmission from ewe to lamb probably occurs via the postnatal route. Detection of scrapie infectivity in the placenta [1] and milk [10] has supported this hypothesis. Further, PrPSc distribution in cattle experimentally affected with L-BSE was limited to the central nervous system, and little PrPSc accumulation was observed in the peripheral nerve tissue and adrenal gland at the clinical stage [9]. This result was similar to that observed in cattle experimentally affected with C-BSE.

Epidemiological and transmission studies have not revealed any risk of BSE transmission through semen, milk, or embryos [14]. The limited PrPSc accumulation in the BSE-affected dam may be responsible for the absence of maternal transmission in this case.

This is the first case report on an offspring that was delivered when the dam was in the terminal stages of atypical BSE. Studies such as this one—even though labor-intensive—are essential for obtaining scientific data that are important for risk analysis of rare diseases.

ACKNOWLEDGEMENTS

We would like to acknowledge the considerable help extended by officers of the Ministry of Agriculture, Forestry and Fisheries and from the Livestock Industry Division and the Livestock Hygiene Service Center at Nagasaki Prefecture; we would also like to acknowledge the cow owner who helped us in obtaining data on the offspring. The authors also thank the animal-care staff at the National Institute of Animal Health, who took care of the cattle, and the members of the Prion Disease Research Center, National Institute of Animal Health, for their help. This study was supported by grants 1rom the BSE control project of the Ministry of Agriculture, Forestry and Fisheries of Japan.

REFERENCES

snip...see full text references ;

http://www.jstage.jst.go.jp/article/jvms/advpub/0/1008180318/_pdf



14th ICID International Scientific Exchange Brochure -

Final Abstract Number: ISE.114

Session: International Scientific Exchange

Transmissible Spongiform encephalopathy (TSE) animal and human TSE in North America

update October 2009

T. Singeltary

Bacliff, TX, USA

Background:

An update on atypical BSE and other TSE in North America. Please remember, the typical U.K. c-BSE, the atypical l-BSE (BASE), and h-BSE have all been documented in North America, along with the typical scrapie's, and atypical Nor-98 Scrapie, and to date, 2 different strains of CWD, and also TME. All these TSE in different species have been rendered and fed to food producing animals for humans and animals in North America (TSE in cats and dogs ?), and that the trading of these TSEs via animals and products via the USA and Canada has been immense over the years, decades.

Methods:

12 years independent research of available data

Results:

I propose that the current diagnostic criteria for human TSEs only enhances and helps the spreading of human TSE from the continued belief of the UKBSEnvCJD only theory in 2009. With all the science to date refuting it, to continue to validate this old myth, will only spread this TSE agent through a multitude of potential routes and sources i.e. consumption, medical i.e., surgical, blood, dental, endoscopy, optical, nutritional supplements, cosmetics etc.

Conclusion:

I would like to submit a review of past CJD surveillance in the USA, and the urgent need to make all human TSE in the USA a reportable disease, in every state, of every age group, and to make this mandatory immediately without further delay. The ramifications of not doing so will only allow this agent to spread further in the medical, dental, surgical arena's. Restricting the reporting of CJD and or any human TSE is NOT scientific. Iatrogenic CJD knows NO age group, TSE knows no boundaries. I propose as with Aguzzi, Asante, Collinge, Caughey, Deslys, Dormont, Gibbs, Gajdusek, Ironside, Manuelidis, Marsh, et al and many more, that the world of TSE Transmissible Spongiform Encephalopathy is far from an exact science, but there is enough proven science to date that this myth should be put to rest once and for all, and that we move forward with a new classification for human and animal TSE that would properly identify the infected species, the source species, and then the route.

http://ww2.isid.org/Downloads/14th_ICID_ISE_Abstracts.pdf



Wednesday, March 31, 2010

Atypical BSE in Cattle


http://bse-atypical.blogspot.com/2010/03/atypical-bse-in-cattle-position-post.html



ALABAMA MAD COW g-h-BSEalabama

In this study, we identified a novel mutation in the bovine prion protein gene (Prnp), called E211K, of a confirmed BSE positive cow from Alabama, United States of America. This mutation is identical to the E200K pathogenic mutation found in humans with a genetic form of CJD. This finding represents the first report of a confirmed case of BSE with a potential pathogenic mutation within the bovine Prnp gene. We hypothesize that the bovine Prnp E211K mutation most likely has caused BSE in "the approximately 10-year-old cow" carrying the E221K mutation.


http://www.plospathogens.org/article/info%3Adoi%2F10.1371%2Fjournal.ppat.1000156



http://www.plospathogens.org/article/fetchObjectAttachment.action?uri=info%3Adoi%2F10.1371%2Fjournal.ppat.1000156&representation=PDF



Saturday, August 14, 2010

BSE Case Associated with Prion Protein Gene Mutation (g-h-BSEalabama) and VPSPr PRIONPATHY (see mad cow feed in COMMERCE IN ALABAMA...TSS)

http://prionpathy.blogspot.com/2010/08/bse-case-associated-with-prion-protein.html



Monday, August 9, 2010

Variably protease-sensitive prionopathy: A new sporadic disease of the prion protein or just more PRIONBALONEY ?

http://prionunitusaupdate2008.blogspot.com/2010/08/variably-protease-sensitive-prionopathy.html



International Society for Infectious Diseases Web: http://www.isid.org

I ask Professor Kong ;

Thursday, December 04, 2008 3:37 PM Subject: RE: re--Chronic Wating Disease (CWD) and Bovine Spongiform Encephalopathies (BSE): Public Health Risk Assessment

''IS the h-BSE more virulent than typical BSE as well, or the same as cBSE, or less virulent than cBSE? just curious.....''

Professor Kong reply ;

.....snip

''As to the H-BSE, we do not have sufficient data to say one way or another, but we have found that H-BSE can infect humans. I hope we could publish these data once the study is complete.

Thanks for your interest.''

Best regards,

Qingzhong Kong, PhD Associate Professor Department of Pathology Case Western Reserve University Cleveland, OH 44106 USA

END...TSS

P.4.23

Transmission of atypical BSE in humanized mouse models

Liuting Qing1, Wenquan Zou1, Cristina Casalone2, Martin Groschup3, Miroslaw Polak4, Maria Caramelli2, Pierluigi Gambetti1, Juergen Richt5, Qingzhong Kong1 1Case Western Reserve University, USA; 2Instituto Zooprofilattico Sperimentale, Italy; 3Friedrich-Loeffler-Institut, Germany; 4National Veterinary Research Institute, Poland; 5Kansas State University (Previously at USDA National Animal Disease Center), USA

Background: Classical BSE is a world-wide prion disease in cattle, and the classical BSE strain (BSE-C) has led to over 200 cases of clinical human infection (variant CJD). Atypical BSE cases have been discovered in three continents since 2004; they include the L-type (also named BASE), the H-type, and the first reported case of naturally occurring BSE with mutated bovine PRNP (termed BSE-M). The public health risks posed by atypical BSE were largely undefined.

Objectives: To investigate these atypical BSE types in terms of their transmissibility and phenotypes in humanized mice. Methods: Transgenic mice expressing human PrP were inoculated with several classical (C-type) and atypical (L-, H-, or Mtype) BSE isolates, and the transmission rate, incubation time, characteristics and distribution of PrPSc, symptoms, and histopathology were or will be examined and compared.

Results: Sixty percent of BASE-inoculated humanized mice became infected with minimal spongiosis and an average incubation time of 20-22 months, whereas only one of the C-type BSE-inoculated mice developed prion disease after more than 2 years. Protease-resistant PrPSc in BASE-infected humanized Tg mouse brains was biochemically different from bovine BASE or sCJD. PrPSc was also detected in the spleen of 22% of BASE-infected humanized mice, but not in those infected with sCJD. Secondary transmission of BASE in the humanized mice led to a small reduction in incubation time.

The atypical BSE-H strain is also transmissible with distinct phenotypes in the humanized mice, but no BSE-M transmission has been observed so far.

Discussion: Our results demonstrate that BASE is more virulent than classical BSE, has a lymphotropic phenotype, and displays a modest transmission barrier in our humanized mice.

BSE-H is also transmissible in our humanized Tg mice.

The possibility of more than two atypical BSE strains will be discussed.

Supported by NINDS NS052319, NIA AG14359, and NIH AI 77774.


http://www.prion2009.com/sites/default/files/Prion2009_Book_of_Abstracts.pdf



P02.35

Molecular Features of the Protease-resistant Prion Protein (PrPres) in H-type BSE

Biacabe, A-G1; Jacobs, JG2; Gavier-Widén, D3; Vulin, J1; Langeveld, JPM2; Baron, TGM1 1AFSSA, France; 2CIDC-Lelystad, Netherlands; 3SVA, Sweden

Western blot analyses of PrPres accumulating in the brain of BSE-infected cattle have demonstrated 3 different molecular phenotypes regarding to the apparent molecular masses and glycoform ratios of PrPres bands. We initially described isolates (H-type BSE) essentially characterized by higher PrPres molecular mass and decreased levels of the diglycosylated PrPres band, in contrast to the classical type of BSE. This type is also distinct from another BSE phenotype named L-type BSE, or also BASE (for Bovine Amyloid Spongiform Encephalopathy), mainly characterized by a low representation of the diglycosylated PrPres band as well as a lower PrPres molecular mass. Retrospective molecular studies in France of all available BSE cases older than 8 years old and of part of the other cases identified since the beginning of the exhaustive surveillance of the disease in 20001 allowed to identify 7 H-type BSE cases, among 594 BSE cases that could be classified as classical, L- or H-type BSE. By Western blot analysis of H-type PrPres, we described a remarkable specific feature with antibodies raised against the C-terminal region of PrP that demonstrated the existence of a more C-terminal cleaved form of PrPres (named PrPres#2 ), in addition to the usual PrPres form (PrPres #1). In the unglycosylated form, PrPres #2 migrates at about 14 kDa, compared to 20 kDa for PrPres #1. The proportion of the PrPres#2 in cattle seems to by higher compared to the PrPres#1. Furthermore another PK-resistant fragment at about 7 kDa was detected by some more N-terminal antibodies and presumed to be the result of cleavages of both N- and C-terminal parts of PrP. These singular features were maintained after transmission of the disease to C57Bl/6 mice. The identification of these two additional PrPres fragments (PrPres #2 and 7kDa band) reminds features reported respectively in sporadic Creutzfeldt-Jakob disease and in Gerstmann-Sträussler-Scheinker (GSS) syndrome in humans.


http://www.neuroprion.com/pdf_docs/conferences/prion2007/abstract_book.pdf




Saturday, December 01, 2007

Phenotypic Similarity of Transmissible Mink Encephalopathy in Cattle and L-type Bovine Spongiform Encephalopathy in a Mouse Model

Volume 13, Number 12–December 2007 Research


http://transmissible-mink-encephalopathy.blogspot.com/2007/12/phenotypic-similarity-of-transmissible.html




Friday, August 27, 2010

NEW ATYPICAL NOR-98 SCRAPIE CASE DETECTED IDAHO NOW 5 CASES DOCUMENTED 2010

http://nor-98.blogspot.com/2010/08/new-atypical-nor-98-scrapie-case.html


P.9.21

Molecular characterization of BSE in Canada

Jianmin Yang1, Sandor Dudas2, Catherine Graham2, Markus Czub3, Tim McAllister1, Stefanie Czub1 1Agriculture and Agri-Food Canada Research Centre, Canada; 2National and OIE BSE Reference Laboratory, Canada; 3University of Calgary, Canada

Background: Three BSE types (classical and two atypical) have been identified on the basis of molecular characteristics of the misfolded protein associated with the disease. To date, each of these three types have been detected in Canadian cattle.

Objectives: This study was conducted to further characterize the 16 Canadian BSE cases based on the biochemical properties of there associated PrPres. Methods: Immuno-reactivity, molecular weight, glycoform profiles and relative proteinase K sensitivity of the PrPres from each of the 16 confirmed Canadian BSE cases was determined using modified Western blot analysis.

Results: Fourteen of the 16 Canadian BSE cases were C type, 1 was H type and 1 was L type. The Canadian H and L-type BSE cases exhibited size shifts and changes in glycosylation similar to other atypical BSE cases. PK digestion under mild and stringent conditions revealed a reduced protease resistance of the atypical cases compared to the C-type cases. N terminal- specific antibodies bound to PrPres from H type but not from C or L type. The C-terminal-specific antibodies resulted in a shift in the glycoform profile and detected a fourth band in the Canadian H-type BSE.

Discussion: The C, L and H type BSE cases in Canada exhibit molecular characteristics similar to those described for classical and atypical BSE cases from Europe and Japan. This supports the theory that the importation of BSE contaminated feedstuff is the source of C-type BSE in Canada. It also suggests a similar cause or source for atypical BSE in these countries.

http://www.prion2009.com/sites/default/files/Prion2009_Book_of_Abstracts.pdf


Wednesday, August 11, 2010

REPORT ON THE INVESTIGATION OF THE SIXTEENTH CASE OF BOVINE SPONGIFORM ENCEPHALOPATHY (BSE) IN CANADA

http://bse-atypical.blogspot.com/2010/08/report-on-investigation-of-sixteenth.html


Thursday, August 19, 2010

REPORT ON THE INVESTIGATION OF THE SEVENTEENTH CASE OF BOVINE SPONGIFORM ENCEPHALOPATHY (BSE) IN CANADA

http://bseusa.blogspot.com/2010/08/report-on-investigation-of-seventeenth.html


Thursday, August 19, 2010

SCRAPIE CANADA UPDATE Current as of 2010-07-31 The following table lists sheep flocks and/or goat herds confirmed to be infected with scrapie in Canada in 2010.

Current as of: 2010-07-31

http://nor-98.blogspot.com/2010/08/scrapie-canada-update-current-as-of.html


TSS

Labels: , , ,

Sunday, August 15, 2010

ATYPICAL BSE NOW LINKED TO CAUSING SPORADIC CJD OVERSEAS Commonwealth of Australia

Rural and Regional Affairs and Transport References Committee The possible impacts and consequences for public health, trade and agriculture of the Government’s decision to relax import restrictions on beef Final report June 2010

2.65 At its hearing on 14 May 2010, the committee heard evidence from Dr Alan Fahey who has recently submitted a thesis on the clinical neuropsychiatric, epidemiological and diagnostic features of Creutzfeldt-Jakob disease.48 Dr Fahey told the committee of his concerns regarding the lengthy incubation period for transmissible spongiform encephalopathies, the inadequacy of current tests and the limited nature of our current understanding of this group of diseases.49

2.66 Dr Fahey also told the committee that in the last two years a link has been established between forms of atypical CJD and atypical BSE. Dr Fahey said that: They now believe that those atypical BSEs overseas are in fact causing sporadic Creutzfeldt-Jakob disease. They were not sure if it was due to mad sheep disease or a different form. If you look in the textbooks it looks like this is just arising by itself. But in my research I have a summary of a document which states that there has never been any proof that sporadic Creutzfeldt-Jakob disease has arisen de novo—has arisen of itself. There is no proof of that. The recent research is that in fact it is due to atypical forms of mad cow disease which have been found across Europe, have been found in America and have been found in Asia. These atypical forms of mad cow disease typically have even longer incubation periods than the classical mad cow disease.50

http://www.aph.gov.au/senate/committee/rrat_ctte/mad_cows/report/report.pdf


Monday, August 9, 2010

National Prion Disease Pathology Surveillance Center Cases Examined (July 31, 2010)

http://prionunitusaupdate2008.blogspot.com/2010/08/national-prion-disease-pathology.html


P.9.21

Molecular characterization of BSE in Canada

Jianmin Yang1, Sandor Dudas2, Catherine Graham2, Markus Czub3, Tim McAllister1, Stefanie Czub1 1Agriculture and Agri-Food Canada Research Centre, Canada; 2National and OIE BSE Reference Laboratory, Canada; 3University of Calgary, Canada

Background: Three BSE types (classical and two atypical) have been identified on the basis of molecular characteristics of the misfolded protein associated with the disease. To date, each of these three types have been detected in Canadian cattle.

Objectives: This study was conducted to further characterize the 16 Canadian BSE cases based on the biochemical properties of there associated PrPres. Methods: Immuno-reactivity, molecular weight, glycoform profiles and relative proteinase K sensitivity of the PrPres from each of the 16 confirmed Canadian BSE cases was determined using modified Western blot analysis.

Results: Fourteen of the 16 Canadian BSE cases were C type, 1 was H type and 1 was L type. The Canadian H and L-type BSE cases exhibited size shifts and changes in glycosylation similar to other atypical BSE cases. PK digestion under mild and stringent conditions revealed a reduced protease resistance of the atypical cases compared to the C-type cases. N terminal- specific antibodies bound to PrPres from H type but not from C or L type. The C-terminal-specific antibodies resulted in a shift in the glycoform profile and detected a fourth band in the Canadian H-type BSE.

Discussion: The C, L and H type BSE cases in Canada exhibit molecular characteristics similar to those described for classical and atypical BSE cases from Europe and Japan. This supports the theory that the importation of BSE contaminated feedstuff is the source of C-type BSE in Canada. It also suggests a similar cause or source for atypical BSE in these countries.

http://www.prion2009.com/sites/default/files/Prion2009_Book_of_Abstracts.pdf


ALABAMA MAD COW g-h-BSEalabama

In this study, we identified a novel mutation in the bovine prion protein gene (Prnp), called E211K, of a confirmed BSE positive cow from Alabama, United States of America. This mutation is identical to the E200K pathogenic mutation found in humans with a genetic form of CJD. This finding represents the first report of a confirmed case of BSE with a potential pathogenic mutation within the bovine Prnp gene. We hypothesize that the bovine Prnp E211K mutation most likely has caused BSE in "the approximately 10-year-old cow" carrying the E221K mutation.

http://www.plospathogens.org/article/info%3Adoi%2F10.1371%2Fjournal.ppat.1000156


http://www.plospathogens.org/article/fetchObjectAttachment.action?uri=info%3Adoi%2F10.1371%2Fjournal.ppat.1000156&representation=PDF


Saturday, August 14, 2010

BSE Case Associated with Prion Protein Gene Mutation (g-h-BSEalabama) and VPSPr PRIONPATHY

http://prionpathy.blogspot.com/2010/08/bse-case-associated-with-prion-protein.html


Wednesday, July 28, 2010

re-Freedom of Information Act Project Number 3625-32000-086-05, Study of Atypical BSE UPDATE July 28, 2010

http://bse-atypical.blogspot.com/2010/07/re-freedom-of-information-act-project.html


Tuesday, August 03, 2010

Variably protease-sensitive prionopathy: A new sporadic disease of the prion protein

http://creutzfeldt-jakob-disease.blogspot.com/2010/08/variably-protease-sensitive-prionopathy.html


Monday, August 9, 2010

Variably protease-sensitive prionopathy: A new sporadic disease of the prion protein or just more Prionbaloney ?

http://prionunitusaupdate2008.blogspot.com/2010/08/variably-protease-sensitive-prionopathy.html


Thursday, August 12, 2010

Seven main threats for the future linked to prions

http://prionpathy.blogspot.com/2010/08/seven-main-threats-for-future-linked-to.html


http://prionpathy.blogspot.com/


Tuesday, March 16, 2010

COMMONWEALTH OF AUSTRALIA Hansard Import restrictions on beef FRIDAY, 5 FEBRUARY 2010 AUSTRALIA

COMMONWEALTH OF AUSTRALIA

Proof Committee Hansard

RRA&T 2 Senate Friday, 5 February 2010

RURAL AND REGIONAL AFFAIRS AND TRANSPORT

[9.03 am]

BELLINGER, Mr Brad, Chairman, Australian Beef Association

CARTER, Mr John Edward, Director, Australian Beef Association

CHAIR—Welcome. Would you like to make an opening statement?

Mr Bellinger—Thank you. The ABA stands by its submission, which we made on 14 December last year, that the decision made by the government to allow the importation of beef from BSE affected countries is politically based, not science based. During this hearing we will bring forward compelling new evidence to back up this statement. When I returned to my property after the December hearing I received a note from an American citizen. I will read a small excerpt from the mail he sent me in order to reinforce the dangers of allowing the importation of beef from BSE affected countries. I have done a number of press releases on this topic, and this fellow has obviously picked my details up from the internet. His name is Terry Singeltary and he is from Bacliff, Texas. He states, and rightfully so:

You should be worried. Please let me explain. I’ve kept up with the mad cow saga for 12 years today, on December 14th 1997, some four months post voluntary and partial mad cow feed ban in the USA, I lost my mother to the Heinemann variant Creutzfeldt-Jakob disease (CJD). I know this is just another phenotype of the infamous sporadic CJDs. Here in the USA, when USA sheep scrapie was transmitted to USA bovine, the agent was not UK BSE—it was a different strain. So why then would human TSE from USA cattle look like UK CJD from UK BSE? It would not. So this accentuates that the science is inconclusive still on this devastating disease. He goes on to state:

The OIE— the International Organisation of Epizootics, the arm of the WTO— is a failed global agent that in my opinion is bought off via bogus regulations for global trade and industry reps. I have done this all these years for nothing but the truth. I am a consumer, I eat meat, but I do not have to sit idly by and see the ignorance and greed of it all while countless numbers of humans and animals are being exposed to the TSE agents. All the USA is interested in is trade, nothing else matters.

Even Dr Stanley Prusiner, who incidentally won the Nobel Health Prize in 1997 for his work on the prion—he invented the word ‘prion’, or it came from him—states:

The BSC policy was set up for one purpose only, trade—the illegal trading of all strains of TSE globally throughout North America, which is home to CBSC, IBSC and HBSC, many scrapie strains and two strains of CJD to date. (please note typo error, those should have read cBSE, lBSE, and hBSE...tss)

I would also like, while I have the opportunity, to explain the beef-off-the-shelves myth. At the first Senate hearing on 14 December, it was explained that the reason why they allowed BSC beef into Australia was the beef-off-the-shelves policy, whereby if we found a case of BSC in Australia they would have to recall all—

Friday, 5 February 2010 Senate RRA&T 3

RURAL AND REGIONAL AFFAIRS AND TRANSPORT

Senator HEFFERNAN—Which of course is total BS.

Mr Bellinger—Correct. This is written in the FSANZ document—Food Standards Australia New Zealand. Why isn’t this same policy in New Zealand? It is not—it is only in Australia. We are the only country in the world to have this idiotic policy. So we again call for the tabling of the WTO obligations paperwork. We do not believe that exists.

snip...see full text 110 pages ;

http://www.aph.gov.au/hansard/senate/commttee/S12742.pdf


for those interested, please see much more here ;

http://docket-aphis-2006-0041.blogspot.com/2010/03/commonwealth-of-australia-hansard.html


http://transmissiblespongiformencephalopathy.blogspot.com/2010/02/transmissible-spongiform-encephalopathy.html


Tuesday, July 13, 2010

AUSTRALIAN QUESTIONNAIRE TO ASSESS BSE RISK (OIE) Terrestrial Animal Health Code, 2009 and USA export risk factor for BSE to Australia

http://usdameatexport.blogspot.com/2010/07/australian-questionnaire-to-assess-bse.html


Saturday, August 14, 2010

USA NON-SPECIES CODING SYSTEM (BEEF IMPORT EXPORT BSE RISK THERE FROM)

US denies it's illegally sending beef to Australia ?

Friday, 13/08/2010

http://usdameatexport.blogspot.com/2010/08/usa-non-species-coding-system-beef.html


Saturday, June 19, 2010 U.S.

DENIED UPGRADED BSE STATUS FROM OIE

http://usdameatexport.blogspot.com/2010/06/us-denied-upgraded-bse-status-from-oie.html


TSS

Labels: , , , ,

Wednesday, August 11, 2010

REPORT ON THE INVESTIGATION OF THE SIXTEENTH CASE OF BOVINE SPONGIFORM ENCEPHALOPATHY (BSE) IN CANADA

REPORT ON THE INVESTIGATION OF THE SIXTEENTH CASE OF BOVINE SPONGIFORM ENCEPHALOPATHY (BSE) IN CANADA

BACKGROUND

On May 8, 2009, the Alberta Provincial Laboratory informed the CFIA Edmonton District office of a BSE Surveillance sample (collected through the Canada Alberta BSE Surveillance Program) with a reaction on the BIO-RAD rapid test that did not rule-out BSE.

Brain samples were forwarded to the National BSE Reference Laboratory in Lethbridge, Alberta. The sample was confirmed as BSE positive using the Scrapie Associated Fibril Immunoblot and mAB 6H4 on May 14, 2009.

Additional testing included the Prionics-Check Priostrip performed on May 12, 2009, Prionics-Check Western, Hybrid Western Blot and BioRad TeSeE ELISA performed on May 13, 2009. All tests were positive. Western blot results indicate the case was c-type (classical) BSE.

The carcass was secured at the sampling site (on farm) and transferred to CFIA’s Lethbridge laboratory for incineration. No part of the carcass entered the human food supply or animal feed chain.

The CFIA immediately initiated an epidemiological investigation based on the recommended BSE guidelines (Terrestrial Animal Health Code 2008) of the World Organisation for Animal Health, referred to as the OIE. Specifically, the CFIA followed the recommended BSE guidelines for a country with controlled risk status and investigated:

• the feed cohort, comprising all cattle which, during their first year of life, were reared with the BSE case during its first year of life, and which investigation showed consumed the same potentially contaminated feed during that period, or

• the birth cohort, comprising all cattle born in the same herd as, and within 12 months of the birth of the BSE case, if the above cannot be identified and

• feed to which the animal may have been exposed early in its life.

ANIMAL INVESTIGATION

The positive animal was a registered Holstein cow born on August 26, 2002. She was 80 months of age at the time of death. The animal was born, raised and had spent her entire life on the same farm. The producer reported the duration of illness as approximately two weeks. Retrospectively, the owner acknowledged a change in behaviour starting at the end of February, 2009 with the animal exhibiting erratic behaviour, trying to jump the gutters in the barn and falling down a few times.

The case animal became progressively more nervous around the other cows and her status in the herd changed from a dominant position to one of the lowest in the herd. She became stiff gaited in all four legs and during the last week of life she became hypersensitive to touch and reacted abnormally to visual stimuli.

Weight loss and decreased milk production were also reported. At the time of examination by the private veterinarian, she appeared weak with subtle to mild ataxia of the hind legs. The producer elected to have the animal humanely destroyed. Since the inclusion criteria of Canada’s National BSE Surveillance Program were met, arrangements were made to forward appropriate samples for laboratory evaluation.

The birth farm was a dairy operation located in Northern Alberta. The feed/ birth cohort was determined to comprise 213 animals which, along with the case animal, were raised on the farm. This cohort consisted of male and female Holsteins. The trace-out investigation located 19 live animals on five premises including the case farm. These animals were quarantined and eight of the 19 live cohorts have been humanely destroyed and their carcasses disposed of by incineration in accordance with the OIE recommendations. The same approach will be followed for the remaining live cohorts.

The following is the disposition of the other animals in the birth/feed cohort:

• 77 animals were traced and confirmed to have died or been slaughtered;

• 67 animals were traced and presumed to have died or been slaughtered;

• three animals were traced and confirmed to have been exported for slaughter and the importing country has been notified

• 47 animals were determined to be untraceable because of records limitations

FEED INVESTIGATION

The feed investigation focussed on feeds to which the case animal may have had access during its first year of life and the manufacturing practices used to produce each of these feeds.

Investigation at the farm revealed dairy cattle to be the only commercially farmed species. Other animals present included a dog and several cats.

There was no pasture use on the farm and all forages were farm-grown and harvested using farm-owned equipment. Non-forage feed products included grain (barley) which was farm-grown or purchased, milk replacer, three different commercially prepared complete feeds and mineral and salt products in block or loose form. All products, with the exception of a commercially prepared complete lactation feed delivered in bulk, were supplied in packages (bagged or blocks) of 20 or 25 kg.

Heifer calves were initially fed colostrum, followed by milk replacer and calf starter beginning within three days of age and with no clearly defined weaning age. Feeding of the calf starter continued to approximately six months with forages and mineral and salt blocks introduced at approximately three months of age. From approximately six months of age onwards, heifers were fed forages, barley, and mineral products only. Bull calves were occasionally kept beyond two weeks of age and, if so, were fed the same way as described for the heifers.

Commercially prepared lactation feed was delivered directly into a bulk storage bin associated with the milking barn for use in preparing a total mixed ration for the lactating herd only. The storage, location, and intended use of this feed, in combination with the separate housing for heifers and lactating cows, as well as a lack of shared mixing or handling equipment, eliminated this feed from further investigation.

Feeds included in the investigation due to direct feeding were: milk replacer, calf starter, barley, mineral blocks and salt blocks. Feeds included in the investigation because exposure could not be eliminated were a small amount of loose mineral and breeder ration.

While much of the barley used was grown on farm, there were purchases for which specific source information was not available. There was also reported use of a third party mobile mix and roller mill employed to roll barley for the farm. Records of other products and how they were used in this roller mill were not available but it was reportedly used to mix grains with commercial supplements for nonruminants at other locations. Its use can not be eliminated as a source of potential contamination for rolled barley fed on the farm. Investigations of sources of milk replacer and salt products identified that these products were produced in specialized facilities dedicated to non-prohibited material products only, thereby ruling them out as possible sources of contamination.

Investigation at the manufacturer supplying the mineral block products identified these were produced in a facility that also produced feeds containing prohibited material. Cross-utilized equipment at the facility included equipment used to receive bulk ingredients and batch mixing equipment. Review of records associated with these points of production indicated procedures to prevent cross contamination with prohibited material were in place and documented.

The calf starter used during the period of interest was identified as manufactured at two different facilities. One facility provided 125 kg of product within the case animal’s first month of life. The other facility provided 4550 kg of product within the case animal’s first six months of life.

Production records for the facility manufacturing the 125 kg of calf starter were not available. One of the mixed pelleted ingredients used in this feed was manufactured in another facility which handled prohibited material but specific production records were not available.

The facility manufacturing the majority of the calf starter also manufactured two other products distributed to the farm (a loose mineral and breeder ration) which the case animal could have been exposed to. This facility also manufactured feeds containing prohibited material with shared equipment throughout all major points of manufacturing. Procedures to prevent cross contamination with prohibited material were in place and documented. Documentation failures at point of bulk ingredient receiving were noted on two occasions.

Findings of the investigation suggest the most likely exposure to infectious material to be through crosscontamination of ingredients used in the manufacture of calf starter fed during the first six months of life (either manufacturer). Additional sources, particularly barley potentially contaminated by cross utilized rolling equipment, can not be ruled out.

INVESTIGATION OVERVIEW

The detection of this case does not change any of Canada's BSE risk parameters. The location and age of the animal are consistent with previous cases. Surveillance results to date, including this case, reflect an extremely low level of BSE in Canada.

Since the confirmation of BSE in a native-born animal in May 2003, Canada has significantly increased its targeted testing of cattle in high-risk categories advocated by the OIE. This effort is directed at determining the level of BSE in Canada while monitoring the effectiveness of the risk-mitigating measures in place. Canada's National BSE Surveillance Program continues to demonstrate an extremely low level of BSE in Canada, with 16 positive animals detected.

With respect to BSE, the safety of beef produced in Canada is assured by public health measures further enhanced in 2003. The removal of specific risk material (SRM) - the tissues that have been demonstrated to have the potential to harbour BSE infectivity - from all animals slaughtered for human consumption is the most effective single measure to protect consumers in Canada and importing countries from exposure to BSE infectivity in meat products.

As demonstrated by the surveillance system, the feed ban implemented in 1997 is effectively preventing the amplification of BSE in Canada. Additional regulations to enhance Canada's feed ban were enacted in 2007. The most important change is the removal of SRM from all animal feeds, pet food and fertilizer. The enhancement will accelerate progress toward eradicating BSE from the national cattle herd by preventing more than 99 percent of potential BSE infectivity from entering the Canadian feed system. These measures are effectively minimizing the risk of BSE transmission.

Canada is officially categorized under the OIE's science-based system as a controlled BSE risk country. This status clearly recognizes the effectiveness of Canada's surveillance, mitigation and eradication measures, and acknowledges the work done by all levels of government, the cattle industry, veterinarians and ranchers to effectively manage and eventually eradicate BSE in Canada.


=====================END REPORT TSS======================



LET'S LOOK AT THE USA COVER-UP OF MAD COW DISEASE, AND HUMAN CJD CASES THERE FROM


National Prion Disease Pathology Surveillance Center Cases Examined1 (July 31, 2010)


(TURN IT UP AND PLEASE WATCH THE VIDEO AT BOTTOM OF URL BELOW)


http://prionunitusaupdate2008.blogspot.com/2010/08/national-prion-disease-pathology.html




HOW can you have a new prionpathy in young in the USA, and call it a genetic disease, but that is not a genetic disease, but really is sporadic, due to no related gene mutation, however, this same genetic TSE, that is not genetic, but sporadic for humans, matches the Alabama mad cow exactly, and it not be related ???


2010

Original Article

Variably protease-sensitive prionopathy: A new sporadic disease of the prion protein

>>> Because 8 out of 10 patients had a positive family history of dementia in the original study, a genetic cause was suspected. Although all cases were homozygous for valine at codon 129 of the PrP gene, NO mutations were detected. <<<



http://creutzfeldt-jakob-disease.blogspot.com/2010/08/variably-protease-sensitive-prionopathy.html


14th ICID International Scientific Exchange Brochure - Final Abstract Number: ISE.114

Session: International Scientific Exchange


Transmissible Spongiform encephalopathy (TSE) animal and human TSE in North America update October 2009

T. Singeltary Bacliff, TX, USA

Background: An update on atypical BSE and other TSE in North America. Please remember, the typical U.K. c-BSE, the atypical l-BSE (BASE), and h-BSE have all been documented in North America, along with the typical scrapie's, and atypical Nor-98 Scrapie, and to date, 2 different strains of CWD, and also TME. All these TSE in different species have been rendered and fed to food producing animals for humans and animals in North America (TSE in cats and dogs ?), and that the trading of these TSEs via animals and products via the USA and Canada has been immense over the years, decades.

Methods: 12 years independent research of available data

Results: I propose that the current diagnostic criteria for human TSEs only enhances and helps the spreading of human TSE from the continued belief of the UKBSEnvCJD only theory in 2009. With all the science to date refuting it, to continue to validate this old myth, will only spread this TSE agent through a multitude of potential routes and sources i.e. consumption, medical i.e., surgical, blood, dental, endoscopy, optical, nutritional supplements, cosmetics etc.

Conclusion: I would like to submit a review of past CJD surveillance in the USA, and the urgent need to make all human TSE in the USA a reportable disease, in every state, of every age group, and to make this mandatory immediately without further delay. The ramifications of not doing so will only allow this agent to spread further in the medical, dental, surgical arena's. Restricting the reporting of CJD and or any human TSE is NOT scientific. Iatrogenic CJD knows NO age group, TSE knows no boundaries. I propose as with Aguzzi, Asante, Collinge, Caughey, Deslys, Dormont, Gibbs, Gajdusek, Ironside, Manuelidis, Marsh, et al and many more, that the world of TSE Transmissible Spongiform Encephalopathy is far from an exact science, but there is enough proven science to date that this myth should be put to rest once and for all, and that we move forward with a new classification for human and animal TSE that would properly identify the infected species, the source species, and then the route.

see page 114 ;


http://ww2.isid.org/Downloads/14th_ICID_ISE_Abstracts.pdf


I ask Professor Kong ;

Thursday, December 04, 2008 3:37 PM
Subject: RE: re--Chronic Wating Disease (CWD) and Bovine Spongiform Encephalopathies (BSE): Public Health Risk Assessment

''IS the h-BSE more virulent than typical BSE as well, or the same as cBSE, or less virulent than cBSE? just curious.....''

Professor Kong reply ;


.....snip

''As to the H-BSE, we do not have sufficient data to say one way or another, but we have found that H-BSE can infect humans. I hope we could publish these data once the study is complete. Thanks for your interest.''

Best regards, Qingzhong Kong,

PhD Associate Professor Department of Pathology Case Western Reserve University Cleveland, OH 44106 USA END...TSS


P.4.23


Transmission of atypical BSE in humanized mouse models


Liuting Qing1, Wenquan Zou1, Cristina Casalone2, Martin Groschup3, Miroslaw Polak4, Maria Caramelli2, Pierluigi Gambetti1, Juergen Richt5, Qingzhong Kong1 1Case Western Reserve University, USA; 2Instituto Zooprofilattico Sperimentale, Italy; 3Friedrich-Loeffler-Institut, Germany; 4National Veterinary Research Institute, Poland; 5Kansas State University (Previously at USDA National Animal Disease Center), USA


Background: Classical BSE is a world-wide prion disease in cattle, and the classical BSE strain (BSE-C) has led to over 200 cases of clinical human infection (variant CJD). Atypical BSE cases have been discovered in three continents since 2004; they include the L-type (also named BASE), the H-type, and the first reported case of naturally occurring BSE with mutated bovine PRNP (termed BSE-M). The public health risks posed by atypical BSE were largely undefined.

Objectives: To investigate these atypical BSE types in terms of their transmissibility and phenotypes in humanized mice.

Methods: Transgenic mice expressing human PrP were inoculated with several classical (C-type) and atypical (L-, H-, or Mtype) BSE isolates, and the transmission rate, incubation time, characteristics and distribution of PrPSc, symptoms, and histopathology were or will be examined and compared.

Results: Sixty percent of BASE-inoculated humanized mice became infected with minimal spongiosis and an average incubation time of 20-22 months, whereas only one of the C-type BSE-inoculated mice developed prion disease after more than 2 years. Protease-resistant PrPSc in BASE-infected humanized Tg mouse brains was biochemically different from bovine BASE or sCJD. PrPSc was also detected in the spleen of 22% of BASE-infected humanized mice, but not in those infected with sCJD. Secondary transmission of BASE in the humanized mice led to a small reduction in incubation time. The atypical BSE-H strain is also transmissible with distinct phenotypes in the humanized mice, but no BSE-M transmission has been observed so far.

Discussion: Our results demonstrate that BASE is more virulent than classical BSE, has a lymphotropic phenotype, and displays a modest transmission barrier in our humanized mice. BSE-H is also transmissible in our humanized Tg mice. The possibility of more than two atypical BSE strains will be discussed.

Supported by NINDS NS052319, NIA AG14359, and NIH AI 77774.


http://www.prion2009.com/sites/default/files/Prion2009_Book_of_Abstracts.pdf


Wednesday, March 31, 2010


Atypical BSE in Cattle To date the OIE/WAHO assumes that the human and animal health standards set out in the BSE chapter for classical BSE (C-Type) applies to all forms of BSE which include the H-type and L-type atypical forms. This assumption is scientifically not completely justified and accumulating evidence suggests that this may in fact not be the case. Molecular characterization and the spatial distribution pattern of histopathologic lesions and immunohistochemistry (IHC) signals are used to identify and characterize atypical BSE. Both the L-type and H-type atypical cases display significant differences in the conformation and spatial accumulation of the disease associated prion protein (PrPSc) in brains of afflicted cattle. Transmission studies in bovine transgenic and wild type mouse models support that the atypical BSE types might be unique strains because they have different incubation times and lesion profiles when compared to C-type BSE. When L-type BSE was inoculated into ovine transgenic mice and Syrian hamster the resulting molecular fingerprint had changed, either in the first or a subsequent passage, from L-type into C-type BSE. In addition, non-human primates are specifically susceptible for atypical BSE as demonstrated by an approximately 50% shortened incubation time for L-type BSE as compared to C-type. Considering the current scientific information available, it cannot be assumed that these different BSE types pose the same human health risks as C-type BSE or that these risks are mitigated by the same protective measures. This study will contribute to a correct definition of specified risk material (SRM) in atypical BSE. The incumbent of this position will develop new and transfer existing, ultra-sensitive methods for the detection of atypical BSE in tissue of experimentally infected cattle.


http://www.prionetcanada.ca/detail.aspx?menu=5&dt=293380&app=93&cat1=387&tp=20&lk=no&cat2


SEE FULL TEXT ;

http://bse-atypical.blogspot.com/2010/03/atypical-bse-in-cattle-position-post.html



Monday, August 9, 2010

Variably protease-sensitive prionopathy: A new sporadic disease of the prion protein or just more Prionbaloney ?


http://prionunitusaupdate2008.blogspot.com/2010/08/variably-protease-sensitive-prionopathy.html


IN CONFIDENCE


AS implied in the Inset 25 we must not _ASSUME_ that transmission of BSE to other species will invariably present pathology typical of a scrapie-like disease. snip...

http://collections.europarchive.org/tna/20080102185948/http://www.bseinquiry.gov.uk/files/yb/1991/01/04004001.pdf


and ;


In Confidence Perceptions of unconventional slow virus diseases of animals in the USA - APRIL-MAY 1989 - G A H Wells 3. Prof. A Robertson gave a brief account of BSE. The US approach was to accord it a very low profile indeed. Dr. A Thiermann showed the picture in the ''Independent'' with cattle being incinerated and thought this was a fanatical incident to be avoided in the US at all costs. BSE was not reported in the USA.


http://collections.europarchive.org/tna/20080102193705/http://www.bseinquiry.gov.uk/files/mb/m11b/tab01.pdf


Monday, October 19, 2009


Atypical BSE, BSE, and other human and animal TSE in North America Update October 19, 2009


http://bse-atypical.blogspot.com/2009/10/atypical-bse-bse-and-other-human-and.html


Sunday, September 6, 2009 MAD COW USA 1997 [SECRET VIDEO]

http://madcowusda.blogspot.com/2009/09/mad-cow-usa-1997-video.html


U.S.A. HIDING MAD COW DISEASE VICTIMS AS SPORADIC CJD ? [SEE VIDEO at bottom]

http://creutzfeldt-jakob-disease.blogspot.com/2009/07/usa-hiding-mad-cow-disease-victims-as.html


DAMNING TESTIMONY FROM STANLEY PRUSINER THE NOBEL PEACE PRIZE WINNER ON PRIONS SPEAKING ABOUT ANN VENEMAN [SEE VIDEO]


http://maddeer.org/video/embedded/prusinerclip.html


Sunday, April 12, 2009

r-calf and the USA mad cow problem, don't look, don't find, and then blame Canada

http://prionunitusaupdate2008.blogspot.com/2009/04/r-calf-and-usa-mad-cow-problem-dont.html


Saturday, April 11, 2009


CJD FOUNDATION SIDES WITH R-CALFERS NO BSE OR HUMAN TSE THERE OF IN USA 'don't be fooled'


http://prionunitusaupdate2008.blogspot.com/2009/04/cjd-foundation-sides-with-r-calfers-no.html


Thursday, June 24, 2010


Accumulation of L-type Bovine Prions in Peripheral Nerve Tissues

Volume 16, Number 7–July 2010


http://bse-atypical.blogspot.com/2010/06/accumulation-of-l-type-bovine-prions-in.html


******$$$$$$******


Saturday, June 12, 2010

PUBLICATION REQUEST AND FOIA REQUEST Project Number: 3625-32000-086-05 Study of Atypical Bse

http://bse-atypical.blogspot.com/2010/06/publication-request-and-foia-request.html


*******$$$$$$*********



Archive Number 20100405.1091 Published Date 05-APR-2010 Subject PRO/AH/EDR> Prion disease update 1010 (04)

snip...

[Terry S. Singeltary Sr. has added the following comment:

"According to the World Health Organisation, the future public health threat of vCJD in the UK and Europe and potentially the rest of the world is of concern and currently unquantifiable. However, the possibility of a significant and geographically diverse vCJD epidemic occurring over the next few decades cannot be dismissed.

The key word here is diverse. What does diverse mean? If USA scrapie transmitted to USA bovine does not produce pathology as the UK c-BSE, then why would CJD from there look like UK vCJD?"

http://www.promedmail.org/pls/apex/f?p=2400:1001:568933508083034::NO::F2400_P1001_BACK_PAGE,F2400_P1001_PUB_MAIL_ID:1000,82101


> Up until about 6 years ago, the pt worked at Tyson foods where she


> worked on the assembly line, slaughtering cattle and preparing them for


> packaging. She was exposed to brain and spinal cord matter when she


> would euthanize the cattle.



http://www.recordandoalinda.com/index.php?option=com_content&view=article&id=19:cjd-english-info&catid=9:cjd-ingles&Itemid=8





CJD TEXAS 38 YEAR OLD FEMALE WORKED SLAUGHTERING CATTLE EXPOSED TO BRAIN AND SPINAL CORD MATTER


http://cjdtexas.blogspot.com/2010/03/cjd-texas-38-year-old-female-worked.html



Monday, April 5, 2010

UPDATE - CJD TEXAS 38 YEAR OLD FEMALE WORKED SLAUGHTERING CATTLE EXPOSED TO BRAIN AND SPINAL CORD MATTER

http://prionunitusaupdate2008.blogspot.com/2010/04/update-cjd-texas-38-year-old-female.html



Tuesday, June 1, 2010

USA cases of dpCJD rising with 24 cases so far in 2010

http://cjdtexas.blogspot.com/2010/06/usa-cases-of-dpcjd-rising-with-24-cases.html



Sunday, July 11, 2010

CJD or prion disease 2 CASES McLennan County Texas population 230,213 both cases in their 40s

http://creutzfeldt-jakob-disease.blogspot.com/2010/07/cjd-2-cases-mclennan-county-texas.html



Friday, February 05, 2010

New Variant Creutzfelt Jakob Disease case reports United States 2010 A Review

http://vcjd.blogspot.com/2010/02/new-variant-creutzfelt-jakob-disease.html



Manuscript Draft Manuscript Number: Title: HUMAN and ANIMAL TSE Classifications i.e. mad cow disease and the UKBSEnvCJD only theory Article Type: Personal View Corresponding Author: Mr. Terry S. Singeltary, Corresponding Author's Institution: na First Author: Terry S Singeltary, none Order of Authors: Terry S Singeltary, none; Terry S. Singeltary

Abstract: TSEs have been rampant in the USA for decades in many species, and they all have been rendered and fed back to animals for human/animal consumption. I propose that the current diagnostic criteria for human TSEs only enhances and helps the spreading of human TSE from the continued belief of the UKBSEnvCJD only theory in 2007.

http://www.regulations.gov/fdmspublic/ContentViewer?objectId=090000648027c28e&disposition=attachment&contentType=pdf



Saturday, June 13, 2009

Monitoring the occurrence of emerging forms of Creutzfeldt-Jakob disease in the United States 2003 revisited 2009

http://cjdusa.blogspot.com/2009/06/monitoring-occurrence-of-emerging-forms.html



Saturday, January 2, 2010

Human Prion Diseases in the United States January 1, 2010 ***FINAL***

http://prionunitusaupdate2008.blogspot.com/2010/01/human-prion-diseases-in-united-states.html



my comments to PLosone here ;


http://www.plosone.org/annotation/listThread.action?inReplyTo=info%3Adoi%2F10.1371%2Fannotation%2F04ce2b24-613d-46e6-9802-4131e2bfa6fd&root=info%3Adoi%2F10.1371%2Fannotation%2F04ce2b24-613d-46e6-9802-4131e2bfa6fd



HOW many of you recieved a written CJD Questionnaire asking real questions pertaining to route and source (and there are many here in North America) ?

IS every case getting a cjd questionnaire asking real questions ???

Friday, November 30, 2007

CJD QUESTIONNAIRE USA CWRU AND CJD FOUNDATION USA PRION UNIT

http://cjdquestionnaire.blogspot.com/




BSE MAD COW FIREWALL IN THE USA, THE MAD COW FEED BAN, WHAT BAN ?


10,000,000+ LBS. of PROHIBITED BANNED MAD COW FEED I.E. BLOOD LACED MBM IN COMMERCE USA 2007

Date: March 21, 2007 at 2:27 pm PST

RECALLS AND FIELD CORRECTIONS: VETERINARY MEDICINES -- CLASS II

___________________________________

PRODUCT

Bulk cattle feed made with recalled Darling's 85% Blood Meal, Flash Dried, Recall # V-024-2007

CODE

Cattle feed delivered between 01/12/2007 and 01/26/2007

RECALLING FIRM/MANUFACTURER

Pfeiffer, Arno, Inc, Greenbush, WI. by conversation on February 5, 2007.

Firm initiated recall is ongoing.

REASON

Blood meal used to make cattle feed was recalled because it was cross- contaminated with prohibited bovine meat and bone meal that had been manufactured on common equipment and labeling did not bear cautionary BSE statement.

VOLUME OF PRODUCT IN COMMERCE

42,090 lbs.

DISTRIBUTION

WI

___________________________________

PRODUCT

Custom dairy premix products: MNM ALL PURPOSE Pellet, HILLSIDE/CDL Prot- Buffer Meal, LEE, M.-CLOSE UP PX Pellet, HIGH DESERT/ GHC LACT Meal, TATARKA, M CUST PROT Meal, SUNRIDGE/CDL PROTEIN Blend, LOURENZO, K PVM DAIRY Meal, DOUBLE B DAIRY/GHC LAC Mineral, WEST PIONT/GHC CLOSEUP Mineral, WEST POINT/GHC LACT Meal, JENKS, J/COMPASS PROTEIN Meal, COPPINI - 8# SPECIAL DAIRY Mix, GULICK, L-LACT Meal (Bulk), TRIPLE J - PROTEIN/LACTATION, ROCK CREEK/GHC MILK Mineral, BETTENCOURT/GHC S.SIDE MK-MN, BETTENCOURT #1/GHC MILK MINR, V&C DAIRY/GHC LACT Meal, VEENSTRA, F/GHC LACT Meal, SMUTNY, A- BYPASS ML W/SMARTA, Recall # V-025-2007

CODE

The firm does not utilize a code - only shipping documentation with commodity and weights identified.

RECALLING FIRM/MANUFACTURER

Rangen, Inc, Buhl, ID, by letters on February 13 and 14, 2007. Firm initiated recall is complete.

REASON

Products manufactured from bulk feed containing blood meal that was cross contaminated with prohibited meat and bone meal and the labeling did not bear cautionary BSE statement.

VOLUME OF PRODUCT IN COMMERCE

9,997,976 lbs.

DISTRIBUTION

ID and NV

END OF ENFORCEMENT REPORT FOR MARCH 21, 2007

http://www.fda.gov/Safety/Recalls/EnforcementReports/2007/ucm120446.htm




WHAT ABOUT THAT g-c-BSE-alabama mad cow, what about that mad cow feed in Alabama ???


Date: September 6, 2006 at 7:58 am PST PRODUCT

a) EVSRC Custom dairy feed, Recall # V-130-6;

b) Performance Chick Starter, Recall # V-131-6;

c) Performance Quail Grower, Recall # V-132-6;

d) Performance Pheasant Finisher, Recall # V-133-6.

CODE None RECALLING FIRM/MANUFACTURER Donaldson & Hasenbein/dba J&R Feed Service, Inc., Cullman, AL, by telephone on June 23, 2006 and by letter dated July 19, 2006. Firm initiated recall is complete.

REASON

Dairy and poultry feeds were possibly contaminated with ruminant based protein.

VOLUME OF PRODUCT IN COMMERCE 477.72 tons

DISTRIBUTION AL

______________________________

http://www.fda.gov/bbs/topics/enforce/2006/ENF00968.html


PRODUCT Bulk custom dairy pre-mixes,

Recall # V-120-6 CODE None RECALLING FIRM/MANUFACTURER Ware Milling Inc., Houston, MS, by telephone on June 23, 2006. Firm initiated recall is complete. REASON Possible contamination of dairy animal feeds with ruminant derived meat and bone meal.

VOLUME OF PRODUCT IN COMMERCE 350 tons

DISTRIBUTION AL and MS

______________________________

PRODUCT

a) Tucker Milling, LLC Tm 32% Sinking Fish Grower, #2680-Pellet, 50 lb. bags, Recall # V-121-6;

b) Tucker Milling, LLC #31120, Game Bird Breeder Pellet, 50 lb. bags, Recall # V-122-6;

c) Tucker Milling, LLC #31232 Game Bird Grower, 50 lb. bags, Recall # V-123-6;

d) Tucker Milling, LLC 31227-Crumble, Game Bird Starter, BMD Medicated, 50 lb bags, Recall # V-124-6;

e) Tucker Milling, LLC #31120, Game Bird Breeder, 50 lb bags, Recall # V-125-6;

f) Tucker Milling, LLC #30230, 30 % Turkey Starter, 50 lb bags, Recall # V-126-6;

g) Tucker Milling, LLC #30116, TM Broiler Finisher, 50 lb bags, Recall # V-127-6

CODE All products manufactured from 02/01/2005 until 06/20/2006 RECALLING FIRM/MANUFACTURER Recalling Firm: Tucker Milling LLC, Guntersville, AL, by telephone and visit on June 20, 2006, and by letter on June 23, 2006. Manufacturer: H. J. Baker and Brothers Inc., Stamford, CT. Firm initiated recall is ongoing.

REASON Poultry and fish feeds which were possibly contaminated with ruminant based protein were not labeled as "Do not feed to ruminants".

VOLUME OF PRODUCT IN COMMERCE 7,541-50 lb bags

DISTRIBUTION AL, GA, MS, and TN

END OF ENFORCEMENT REPORT FOR AUGUST 9, 2006

###

http://www.fda.gov/bbs/topics/ENFORCE/2006/ENF00964.html


Subject: MAD COW FEED RECALL AL AND FL VOLUME OF PRODUCT IN COMMERCE 125 TONS Products manufactured from 02/01/2005 until 06/06/2006

Date: August 6, 2006 at 6:16 pm PST PRODUCT

a) CO-OP 32% Sinking Catfish, Recall # V-100-6;

b) Performance Sheep Pell W/Decox/A/N, medicated, net wt. 50 lbs, Recall # V-101-6;

c) Pro 40% Swine Conc Meal -- 50 lb, Recall # V-102-6;

d) CO-OP 32% Sinking Catfish Food Medicated, Recall # V-103-6;

e) "Big Jim's" BBB Deer Ration, Big Buck Blend, Recall # V-104-6;

f) CO-OP 40% Hog Supplement Medicated Pelleted, Tylosin 100 grams/ton, 50 lb. bag, Recall # V-105-6;

g) Pig Starter Pell II, 18% W/MCDX Medicated 282020, Carbadox -- 0.0055%, Recall # V-106-6;

h) CO-OP STARTER-GROWER CRUMBLES, Complete Feed for Chickens from Hatch to 20 Weeks, Medicated, Bacitracin Methylene Disalicylate, 25 and 50 Lbs, Recall # V-107-6;

i) CO-OP LAYING PELLETS, Complete Feed for Laying Chickens, Recall # 108-6;

j) CO-OP LAYING CRUMBLES, Recall # V-109-6;

k) CO-OP QUAIL FLIGHT CONDITIONER MEDICATED, net wt 50 Lbs, Recall # V-110-6;

l) CO-OP QUAIL STARTER MEDICATED, Net Wt. 50 Lbs, Recall # V-111-6;

m) CO-OP QUAIL GROWER MEDICATED, 50 Lbs, Recall # V-112-6 CODE

Product manufactured from 02/01/2005 until 06/06/2006


RECALLING FIRM/MANUFACTURER Alabama Farmers Cooperative, Inc., Decatur, AL, by telephone, fax, email and visit on June 9, 2006. FDA initiated recall is complete.

REASON Animal and fish feeds which were possibly contaminated with ruminant based protein not labeled as "Do not feed to ruminants".

VOLUME OF PRODUCT IN COMMERCE 125 tons

DISTRIBUTION AL and FL

END OF ENFORCEMENT REPORT FOR AUGUST 2, 2006

###

http://www.fda.gov/bbs/topics/enforce/2006/ENF00963.html


MAD COW FEED RECALL USA EQUALS 10,878.06 TONS NATIONWIDE Sun Jul 16, 2006 09:22 71.248.128.67

RECALLS AND FIELD CORRECTIONS: VETERINARY MEDICINE -- CLASS II

______________________________

PRODUCT

a) PRO-LAK, bulk weight, Protein Concentrate for Lactating Dairy Animals, Recall # V-079-6;

b) ProAmino II, FOR PREFRESH AND LACTATING COWS, net weight 50lb (22.6 kg), Recall # V-080-6;

c) PRO-PAK, MARINE & ANIMAL PROTEIN CONCENTRATE FOR USE IN ANIMAL FEED, Recall # V-081-6;

d) Feather Meal, Recall # V-082-6 CODE

a) Bulk

b) None

c) Bulk

d) Bulk

RECALLING FIRM/MANUFACTURER H. J. Baker & Bro., Inc., Albertville, AL, by telephone on June 15, 2006 and by press release on June 16, 2006. Firm initiated recall is ongoing.

REASON

Possible contamination of animal feeds with ruminent derived meat and bone meal.

VOLUME OF PRODUCT IN COMMERCE 10,878.06 tons

DISTRIBUTION Nationwide

END OF ENFORCEMENT REPORT FOR July 12, 2006

###

http://www.fda.gov/bbs/topics/enforce/2006/ENF00960.html




JOURNAL OF NEUROLOGY

MARCH 26, 2003

Send Post-Publication Peer Review to journal:

Re: RE-Monitoring the occurrence of emerging forms of Creutzfeldt-Jakob

disease in the United States

Email Terry S. Singeltary:

flounder@wt.net

http://www.neurology.org/cgi/eletters/60/2/176#535



Newsdesk The Lancet Infectious Diseases, Volume 3, Issue 8, Page 463, August 2003 doi:10.1016/S1473-3099(03)00715-1Cite or Link Using DOI

Tracking spongiform encephalopathies in North America

Xavier Bosch

"My name is Terry S Singeltary Sr, and I live in Bacliff, Texas. I lost my mom to hvCJD (Heidenhain variant CJD) and have been searching for answers ever since. What I have found is that we have not been told the truth. CWD in deer and elk is a small portion of a much bigger problem." 49-year-old Singeltary is one of a number of people who have remained largely unsatisfied after being told that a close relative died from a rapidly progressive dementia compatible with spontaneous Creutzfeldt-Jakob disease (CJD). So he decided to gather hundreds of documents on transmissible spongiform encephalopathies (TSE) and realised that if Britons could get variant CJD from bovine spongiform encephalopathy (BSE), Americans might get a similar disorder from chronic wasting disease (CWD)-the relative of mad cow disease seen among deer and elk in the USA. Although his feverish.


http://linkinghub.elsevier.com/retrieve/pii/S1473309903007151



http://www.thelancet.com/journals/laninf/article/PIIS1473-3099(03)00715-1/fulltext



http://www.mdconsult.com/das/article/body/180784492-2/jorg=journal&source=&sp=13979213&sid=0/N/368742/1.html?issn=14733099



Diagnosis and Reporting of Creutzfeldt-Jakob Disease Singeltary, Sr et al. JAMA.2001; 285: 733-734. Vol. 285 No. 6, February 14, 2001 JAMA

Diagnosis and Reporting of Creutzfeldt-Jakob Disease

To the Editor: In their Research Letter, Dr Gibbons and colleagues1 reported that the annual US death rate due to Creutzfeldt-Jakob disease (CJD) has been stable since 1985. These estimates, however, are based only on reported cases, and do not include misdiagnosed or preclinical cases. It seems to me that misdiagnosis alone would drastically change these figures. An unknown number of persons with a diagnosis of Alzheimer disease in fact may have CJD, although only a small number of these patients receive the postmortem examination necessary to make this diagnosis. Furthermore, only a few states have made CJD reportable. Human and animal transmissible spongiform encephalopathies should be reportable nationwide and internationally.

Terry S. Singeltary, Sr Bacliff, Tex

1. Gibbons RV, Holman RC, Belay ED, Schonberger LB. Creutzfeldt-Jakob disease in the United States: 1979-1998. JAMA. 2000;284:2322-2323. FREE FULL TEXT


http://jama.ama-assn.org/cgi/content/extract/285/6/733?maxtoshow=&HITS=10&hits=10&RESULTFORMAT=&fulltext=singeltary&searchid=1&FIRSTINDEX=0&resourcetype=HWCIT



http://jama.ama-assn.org/cgi/content/full/285/6/733?maxtoshow=&HITS=10&hits=10&RESULTFORMAT=&fulltext=singeltary&searchid=1&FIRSTINDEX=0&resourcetype=HWCIT



2 January 2000

British Medical Journal

U.S. Scientist should be concerned with a CJD epidemic in the U.S., as well

http://www.bmj.com/cgi/eletters/320/7226/8/b#6117



15 November 1999

British Medical Journal

vCJD in the USA * BSE in U.S.

http://www.bmj.com/cgi/eletters/319/7220/1312/b#5406



THE PATHOLOGICAL PROTEIN

BY Philip Yam

Yam Philip Yam News Editor Scientific American www.sciam.com

Answering critics like Terry Singeltary, who feels that the U.S. under- counts CJD, Schonberger conceded that the current surveillance system has errors but stated that most of the errors will be confined to the older population.

CHAPTER 14

Laying Odds

Are prion diseases more prevalent than we thought?

Researchers and government officials badly underestimated the threat that mad cow disease posed when it first appeared in Britain. They didn't think bovine spongiform encephalopathy was a zoonosis-an animal disease that can sicken people. The 1996 news that BSE could infect humans with a new form of Creutzfeldt-Jakob disease stunned the world. It also got some biomedical researchers wondering whether sporadic CJD may really be a manifestation of a zoonotic sickness. Might it be caused by the ingestion of prions, as variant CJD is?

Revisiting Sporadic CJD

It's not hard to get Terry Singeltary going. "I have my conspiracy theories," admitted the 49-year-old Texan.1 Singeltary is probably the nation's most relentless consumer advocate when it comes to issues in prion diseases. He has helped families learn about the sickness and coordinated efforts with support groups such as CJD Voice and the CJD Foundation. He has also connected with others who are critical of the American way of handling the threat of prion diseases. Such critics include Consumers Union's Michael Hansen, journalist John Stauber, and Thomas Pringle, who used to run the voluminous www.madcow. org Web site. These three lend their expertise to newspaper and magazine stories about prion diseases, and they usually argue that prions represent more of a threat than people realize, and that the government has responded poorly to the dangers because it is more concerned about protecting the beef industry than people's health.

Singeltary has similar inclinations. ...


http://books.google.com/books?id=ePbrQNFrHtoC&pg=PA223&lpg=PA223&dq=the+pathological+protein+laying+odds+It%E2%80%99s+not+hard+to+get+Terry+Singeltary+going&source=bl&ots=um0PFAZSZD&sig=JWaGR7M7-1WeAr2qAXq8D6J_jak&hl=en&ei=MhtjS8jMJM2ztgeFoa2iBg&sa=X&oi=book_result&ct=result&resnum=1&ved=0CAcQ6AEwAA#v=onepage&q=&f=false



http://www.springerlink.com/content/r2k2622661473336/fulltext.pdf?page=1


http://www.thepathologicalprotein.com/



DER SPIEGEL (9/2001) - 24.02.2001 (9397 Zeichen) USA: Loch in der Mauer Die BSE-Angst erreicht Amerika: Trotz strikter Auflagen gelangte in Texas verbotenes Tiermehl ins Rinderfutter - die Kontrollen der Aufsichtsbehördensind lax.Link auf diesen Artikel im Archiv: http://service.spiegel.de/digas/find?DID=18578755

"Löcher wie in einem Schweizer Käse" hat auch Terry Singeltary im Regelwerk der FDA ausgemacht. Der Texaner kam auf einem tragischen Umweg zu dem Thema: Nachdem seine Mutter 1997 binnen weniger Wochen an der Creutzfeldt-Jakob-Krankheit gestorben war, versuchte er, die Ursachen der Infektion aufzuspüren. Er klagte auf die Herausgabe von Regierungsdokumenten und arbeitete sich durch Fachliteratur; heute ist er überzeugt, dass seine Mutter durch die stetige Einnahme von angeblich kräftigenden Mitteln erkrankte, in denen - völlig legal - Anteile aus Rinderprodukten enthalten sind.

Von der Fachwelt wurde Singeltary lange als versponnener Außenseiter belächelt. Doch mittlerweile sorgen sich auch Experten, dass ausgerechnet diese verschreibungsfreien Wundercocktails zur Stärkung von Intelligenz, Immunsystem oder Libido von den Importbeschränkungen ausgenommen sind. Dabei enthalten die Pillen und Ampullen, die in Supermärkten verkauft werden, exotische Mixturen aus Rinderaugen; dazu Extrakte von Hypophyse oder Kälberföten, Prostata, Lymphknoten und gefriergetrocknetem Schweinemagen. In die USA hereingelassen werden auch Blut, Fett, Gelatine und Samen. Diese Stoffe tauchen noch immer in US-Produkten auf, inklusive Medizin und Kosmetika. Selbst in Impfstoffen waren möglicherweise gefährliche Rinderprodukte enthalten. Zwar fordert die FDA schon seit acht Jahren die US-Pharmaindustrie auf, keine Stoffe aus Ländern zu benutzen, in denen die Gefahr einer BSE-Infizierung besteht. Aber erst kürzlich verpflichteten sich fünf Unternehmen, darunter Branchenführer wie GlaxoSmithKline, Aventis und American Home Products, ihre Seren nur noch aus unverdächtigem Material herzustellen.

"Its as full of holes as Swiss Cheese" says Terry Singeltary of the FDA regulations. ...


http://www.spiegel.de/spiegel/print/d-18578755.html


http://wissen.spiegel.de/wissen/image/show.html?did=18578755&aref=image024/E0108/SCSP200100901440145.pdf&thumb=false


http://service.spiegel.de/digas/servlet/find/DID=18578755



Suspect symptoms

What if you can catch old-fashioned CJD by eating meat from a sheep infected with scrapie?

28 Mar 01

Like lambs to the slaughter 31 March 2001 by Debora MacKenzie Magazine issue 2284. Subscribe and get 4 free issues. FOUR years ago, Terry Singeltary watched his mother die horribly from a degenerative brain disease. Doctors told him it was Alzheimer's, but Singeltary was suspicious. The diagnosis didn't fit her violent symptoms, and he demanded an autopsy. It showed she had died of sporadic Creutzfeldt-Jakob disease.

Most doctors believe that sCJD is caused by a prion protein deforming by chance into a killer. But Singeltary thinks otherwise. He is one of a number of campaigners who say that some sCJD, like the variant CJD related to BSE, is caused by eating meat from infected animals. Their suspicions have focused on sheep carrying scrapie, a BSE-like disease that is widespread in flocks across Europe and North America.

Now scientists in France have stumbled across new evidence that adds weight to the campaigners' fears. To their complete surprise, the researchers found that one strain of scrapie causes the same brain damage in mice as sCJD.

"This means we cannot rule out that at least some sCJD may be caused by some strains of scrapie," says team member Jean-Philippe Deslys of the French Atomic Energy Commission's medical research laboratory in Fontenay-aux-Roses, south-west of Paris. Hans Kretschmar of the University of Göttingen, who coordinates CJD surveillance in Germany, is so concerned by the findings that he now wants to trawl back through past sCJD cases to see if any might have been caused by eating infected mutton or lamb.

Scrapie has been around for centuries and until now there has been no evidence that it poses a risk to human health. But if the French finding means that scrapie can cause sCJD in people, countries around the world may have overlooked a CJD crisis to rival that caused by BSE.

Deslys and colleagues were originally studying vCJD, not sCJD. They injected the brains of macaque monkeys with brain from BSE cattle, and from French and British vCJD patients. The brain damage and clinical symptoms in the monkeys were the same for all three. Mice injected with the original sets of brain tissue or with infected monkey brain also developed the same symptoms.

As a control experiment, the team also injected mice with brain tissue from people and animals with other prion diseases: a French case of sCJD; a French patient who caught sCJD from human-derived growth hormone; sheep with a French strain of scrapie; and mice carrying a prion derived from an American scrapie strain. As expected, they all affected the brain in a different way from BSE and vCJD. But while the American strain of scrapie caused different damage from sCJD, the French strain produced exactly the same pathology.

"The main evidence that scrapie does not affect humans has been epidemiology," says Moira Bruce of the neuropathogenesis unit of the Institute for Animal Health in Edinburgh, who was a member of the same team as Deslys. "You see about the same incidence of the disease everywhere, whether or not there are many sheep, and in countries such as New Zealand with no scrapie." In the only previous comparisons of sCJD and scrapie in mice, Bruce found they were dissimilar.

But there are more than 20 strains of scrapie, and six of sCJD. "You would not necessarily see a relationship between the two with epidemiology if only some strains affect only some people," says Deslys. Bruce is cautious about the mouse results, but agrees they require further investigation. Other trials of scrapie and sCJD in mice, she says, are in progress.

People can have three different genetic variations of the human prion protein, and each type of protein can fold up two different ways. Kretschmar has found that these six combinations correspond to six clinical types of sCJD: each type of normal prion produces a particular pathology when it spontaneously deforms to produce sCJD.

But if these proteins deform because of infection with a disease-causing prion, the relationship between pathology and prion type should be different, as it is in vCJD. "If we look at brain samples from sporadic CJD cases and find some that do not fit the pattern," says Kretschmar, "that could mean they were caused by infection."

There are 250 deaths per year from sCJD in the US, and a similar incidence elsewhere. Singeltary and other US activists think that some of these people died after eating contaminated meat or "nutritional" pills containing dried animal brain. Governments will have a hard time facing activists like Singeltary if it turns out that some sCJD isn't as spontaneous as doctors have insisted.

Deslys's work on macaques also provides further proof that the human disease vCJD is caused by BSE. And the experiments showed that vCJD is much more virulent to primates than BSE, even when injected into the bloodstream rather than the brain. This, says Deslys, means that there is an even bigger risk than we thought that vCJD can be passed from one patient to another through contaminated blood transfusions and surgical instruments.

http://www.newscientist.com/article/mg16922840.300-like-lambs-to-the-slaughter.html



Sunday, August 09, 2009

CJD...Straight talk with...James Ironside...and...Terry Singeltary... 2009

http://creutzfeldt-jakob-disease.blogspot.com/2009/08/cjdstraight-talk-withjames.html



Tuesday, August 18, 2009

BSE-The Untold Story - joe gibbs and singeltary 1999 - 2009

http://madcowusda.blogspot.com/2009/08/bse-untold-story-joe-gibbs-and.html



Terry S. Singeltary Sr. P.O. Box 42 Bacliff, Texas USA 77518

Labels: , , , ,

Sunday, August 08, 2010

Proteasome Activity and Biological Properties of Normal Prion Protein: A Comparison between Young and Aged Cattle

Advance Publication The Journal of Veterinary Medical Science Accepted

Date: 18 Jul 2010 J-STAGE Advance Published Date: 2 Aug 2010

Proteasome Activity and Biological Properties of Normal Prion Protein: A Comparison between Young and Aged Cattle

Yumi YOSHIOKA1), Naotaka ISHIGURO1) and Yasuo INOSHIMA1)

1) Laboratory of Food and Environmental Hygiene, Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University

(Received 10-Apr-2010) (Accepted 18-Jul-2010)

ABSTRACT. Atypical bovine spongiform encephalopathy (atypical BSE) has recently been identified in several countries including Japan. Most cases of atypical BSE have been reported in cattle older than 8 years of age. To clarify the association between age and occurrence of atypical BSE, we investigated both the physiological properties and amount of cellular prion protein (PrPC) in brain homogenates from young and aged cattle by enzyme-linked immunosorbent assay and immunoblotting. The amount of PrPC in the brain homogenates was not significantly different between young and aged cattle, but the amount in the detergent-insoluble fraction in the aged cattle was significantly higher than that of young cattle. Significant differences were observed in neither of the glycosylation forms nor in proteinase K sensitivity in young and aged cattle. Age-related changes included deposition of lipofuscin pigment and a decrease of 33% in proteasome activity in the brains of aged cattle compared to that of young cattle.

KEY WORDS: atypical BSE, brain homogenate, cattle, prion, proteasome

DISCUSSION

To clarify the relationship between aged cattle and the occurrence of atypical BSE, we focused on the physiological properties and amount of PrPC in brain homogenates from young and aged cattle. In this study, the brains of aged cattle (> 120 months) exhibited a significant decrease in the 20S proteasome activity, and deposition of lipofuscin pigment served as a sign of aging. Oxidative metabolism is essential for neurons to generate energy, because the high energy demands in neurons lead to aging vulnerability [7]. Additionally, lipofuscin contains some materials derived from lysosomal degradation; furthermore, it increases with aging [7].

We believe our study is support for the age-related decreases of protein turnover in cells. In our study, the amount of PrPC in the detergent-insoluble (P2) fraction was significantly higher in the young than in the aged cattle (Fig. 2C), which agrees well with a decrease in protein turnover including 20S proteasome activity with aging. In vitro evidence has shown that the 20S proteasome selectively degrades damaged proteins following an oxidative insult [8], and is a marker of the primary mechanism for the degrading oxidized proteins [6]. Age-related decline in proteasome activity is also reported in the brain [4] and spinal cord [11].

To analyze more details of the physiological properties of PrPC, the S1 fraction was 10 then fractionated into detergent-soluble (S2) and detergent-insoluble (P2) proteins. PrPC amounts in the S2 and P2 fractions of the aged cattle was slightly higher than that of young cattle, while PrPC amount of the S1 fraction was almost same in young and aged cattle (Fig. 2A). Several experiments using proteasomal inbibitors such as MG132 and N-acetyl-leucinal-leucinal-norleucinal (ALLN) revealed that wild type PrPC is accumulated in both detergent-soluble and - insoluble species, when cells are incubated with proteasomal inhibitors [14, 22]. In particular, the insoluble fraction includes an unglycosylated 26 kDa PrPC molecules with a protease-resistant core [14, 22]. Thus in our study, the remarkable accumulation of PrPC in the P2 fraction of the aged cattle may be caused by the significant decreases in the 20S proteasome activity (Figs 1 and 2). In our study, the P2 samples from young and aged cattle were relatively resistant to PK treatement. However, it is not clear how the physiological properties of PrPC such as PK resistance and accumulation of PrPC in the P2 fraction of the aged cattle are associated with occurrence of atypical BSE. In the future, to elucidate the relationship between expression of PrPC and occurrence of atypical BSE, brain samples from atypical BSE need to be characterized directly.

We found influences of aging on neither of the glycosylation forms nor on PK sensitivity in the bovine PrPC. However, Goh et al. described both an increasing prevalence in the complex oligosaccharides in PrPC from aged mice and an absence of any relationship between aging and PK sensitivity of mouse PrPC [10]. We conclude that age-related physiological changes in PrPC are not the same in cattle and mice. Likewise, Salès et al reported that PrPC expression increase with age in the brain of hamsters [18], while in the present study, the amount of PrPC in the S1 fractions were similar in young and aged cattle, suggesting that PrPC expression may not change 11 drastically with age in the brains of cattle. Again, we conclude interspecies differences.

The present study provides insight into possible explanations for the correlation between cattle age and occurrence of atypical BSE. Perhaps aging should not be considered strictly as an influence on PrPC, but also as an influence on variable structures and functions of the brain due through genetic and environmental mechanisms. Despite the plethora of research on neurodegenerative diseases associated with aging in humans, such as Alzheimer’s and Parkinson’s diseases, questions concerning aging still remain [7]. Mitochondrial dysfunction is thought to be a key factor in age-related diseases of humans [19] and should therefore be investigated in the cattle. Biological relationships between aging and PrPC, including antioxidant-like activity [2], synaptic transmission [15], and the expression of PrPC exposure to oxidative stress in the aged mice [20], have also been reported. Thus, it is conceivable that PrPC plays a role in protecting neurons from the effects of cellular stress.

The origin and mechanisms of the occurrence atypical BSE remains unknown, as with classical BSE. Only one cases of atypical BSE have been reported in young cattle, while classical BSE occurred in aged cattle in Japan [13,21]. It is very difficult to precisely estimate the influences of age on atypical and classical BSE cases. Atypical BSE and classical BSE display unique incubation periods, PrPSc deposition patterns, and histological lesions [9,16]. However, because the onset of BSE is affected by exposure dose of BSE agent and host susceptibility, it is difficult to estimate the infection time for both classical and atypical BSE cases. There is a possibility that atypical BSE agents could infect young cattle and reside within the body for long periods before symptoms of BSE appears in aged cattle. In addition, the low prevalence of atypical BSE identified through mainly active surveillance means that whole brains are not often available for 12 examination. Thus the need remains for detailed sampling of the brain, with the 247 exception the obex region, to determine the etiology of atypical BSE.

http://www.jstage.jst.go.jp/article/jvms/advpub/0/1007260292/_pdf



HOW many cases were missed in the USA and all of North America ???


USDA: In 9,200 cases only one type of test could be used

WASHINGTON (AP)--The U.S. Department of Agriculture acknowledged Aug. 17 that its testing options for bovine spongiform encephalopathy were limited in 9,200 cases despite its effort to expand surveillance throughout the U.S. herd.

In those cases, only one type of test was used--one that failed to detect the disease in an infected Texas cow.

The department posted the information on its website because of an inquiry from The Associated Press.

Conducted over the past 14 months, the tests have not been included in the department's running tally of BSE tests since last summer. That total reached 439,126 on Aug. 17.

"There's no secret program," the department's chief veterinarian, John Clifford, said in an interview. "There has been no hiding, I can assure you of that."

Officials intended to report the tests later in an annual report, Clifford said.

These 9,200 cases were different because brain tissue samples were preserved with formalin, which makes them suitable for only one type of test--immunohistochemistry, or IHC.

In the Texas case, officials had declared the cow free of disease in November after an IHC test came back negative. The department's inspector general ordered an additional kind of test, which confirmed the animal was infected.

Veterinarians in remote locations have used the preservative on tissue to keep it from degrading on its way to the department's laboratory in Ames, Iowa. Officials this year asked veterinarians to stop using preservative and send fresh or chilled samples within 48 hours.

The department recently investigated a possible case of BSE that turned up in a preserved sample. Further testing ruled out the disease two weeks ago.

Scientists used two additional tests--rapid screening and Western blot--to help detect BSE in the country's second confirmed case, in a Texas cow in June. They used IHC and Western blot to confirm the first case, in a Washington state cow in December 2003.

"The IHC test is still an excellent test," Clifford said. "These are not simple tests, either."

Clifford pointed out that scientists reran the IHC several times and got conflicting results. That happened, too, with the Western blot test. Both tests are accepted by international animal health officials.

Date: 8/25/05

http://www.hpj.com/archives/2005/aug05/aug29/BSEtestoptionswerelimited.cfm



>>> These 9,200 cases were different because brain tissue samples were preserved with formalin, which makes them suitable for only one type of test--immunohistochemistry, or IHC. <<<


THIS WAS DONE FOR A REASON! THE IHC test has been proven to be the LEAST LIKELY to detect BSE/TSE in the bovine, and these were probably from the most high risk cattle pool, the ones the USDA et al, SHOULD have been testing. ...TSS


USDA 2003


We have to be careful that we don't get so set in the way we do things that we forget to look for different emerging variations of disease. We've gotten away from collecting the whole brain in our systems. We're using the brain stem and we're looking in only one area. In Norway, they were doing a project and looking at cases of Scrapie, and they found this where they did not find lesions or PRP in the area of the obex. They found it in the cerebellum and the cerebrum. It's a good lesson for us. Ames had to go back and change the procedure for looking at Scrapie samples. In the USDA, we had routinely looked at all the sections of the brain, and then we got away from it. They've recently gone back. Dr. Keller: Tissues are routinely tested, based on which tissue provides an 'official' test result as recognized by APHIS. Dr. Detwiler: That's on the slaughter. But on the clinical cases, aren't they still asking for the brain? But even on the slaughter, they're looking only at the brainstem. We may be missing certain things if we confine ourselves to one area.


snip.............


Dr. Detwiler: It seems a good idea, but I'm not aware of it. Another important thing to get across to the public is that the negatives do not guarantee absence of infectivity. The animal could be early in the disease and the incubation period. Even sample collection is so important. If you're not collecting the right area of the brain in sheep, or if collecting lymphoreticular tissue, and you don't get a good biopsy, you could miss the area with the PRP in it and come up with a negative test. There's a new, unusual form of Scrapie that's been detected in Norway. We have to be careful that we don't get so set in the way we do things that we forget to look for different emerging variations of disease. We've gotten away from collecting the whole brain in our systems. We're using the brain stem and we're looking in only one area. In Norway, they were doing a project and looking at cases of Scrapie, and they found this where they did not find lesions or PRP in the area of the obex. They found it in the cerebellum and the cerebrum. It's a good lesson for us. Ames had to go back and change the procedure for looking at Scrapie samples. In the USDA, we had routinely looked at all the sections of the brain, and then we got away from it. They've recently gone back.


Dr. Keller: Tissues are routinely tested, based on which tissue provides an 'official' test result as recognized by APHIS .


Dr. Detwiler: That's on the slaughter. But on the clinical cases, aren't they still asking for the brain? But even on the slaughter, they're looking only at the brainstem. We may be missing certain things if we confine ourselves to one area.


snip... FULL TEXT;


Completely Edited Version PRION ROUNDTABLE Accomplished this day, Wednesday, December 11, 2003, Denver, Colorado 2005


=============================


NOW, how many mad cows do you think were missed to the blatant deliberate carelessness of the testing and testing protocols, along with blatant flawed surveillance for BSE in the USA and all of North America $$$



CDC DR. PAUL BROWN TSE EXPERT COMMENTS 2006


The U.S. Department of Agriculture was quick to assure the public earlier this week that the third case of mad cow disease did not pose a risk to them, but what federal officials have not acknowledged is that this latest case indicates the deadly disease has been circulating in U.S. herds for at least a decade. The second case, which was detected last year in a Texas cow and which USDA officials were reluctant to verify, was approximately 12 years old. These two cases (the latest was detected in an Alabama cow) present a picture of the disease having been here for 10 years or so, since it is thought that cows usually contract the disease from contaminated feed they consume as calves. The concern is that humans can contract a fatal, incurable, brain-wasting illness from consuming beef products contaminated with the mad cow pathogen. "The fact the Texas cow showed up fairly clearly implied the existence of other undetected cases," Dr. Paul Brown, former medical director of the National Institutes of Health's Laboratory for Central Nervous System Studies and an expert on mad cow-like diseases, told United Press International.

"The question was, 'How many?' and we still can't answer that." Brown, who is preparing a scientific paper based on the latest two mad cow cases to estimate the maximum number of infected cows that occurred in the United States, said he has "absolutely no confidence in USDA tests before one year ago" because of the agency's reluctance to retest the Texas cow that initially tested positive. USDA officials finally retested the cow and confirmed it was infected seven months later, but only at the insistence of the agency's inspector general.

"Everything they did on the Texas cow makes everything USDA did before 2005 suspect," Brown said. ...


snip...end


http://www.upi.com/ConsumerHealthDaily/view.php?StoryID=20060315-055557-1284r


CDC - Bovine Spongiform Encephalopathy and Variant Creutzfeldt ...

Dr. Paul Brown is Senior Research Scientist in the Laboratory of Central Nervous System ... Address for correspondence: Paul Brown, Building 36, Room 4A-05, ...

http://www.cdc.gov/ncidod/eid/vol7no1/brown.htm


In this context, a word is in order about the US testing program. After the discovery of the first (imported) cow in 2003, the magnitude of testing was much increased, reaching a level of >400,000 tests in 2005 (Figure 4). Neither of the 2 more recently indigenously infected older animals with nonspecific clinical features would have been detected without such testing, and neither would have been identified as atypical without confirmatory Western blots. Despite these facts, surveillance has now been decimated to 40,000 annual tests (USDA news release no. 0255.06, July 20, 2006) and invites the accusation that the United States will never know the true status of its involvement with BSE.

In short, a great deal of further work will need to be done before the phenotypic features and prevalence of atypical BSE are understood. More than a single strain may have been present from the beginning of the epidemic, but this possibility has been overlooked by virtue of the absence of widespread Western blot confirmatory testing of positive screening test results; or these new phenotypes may be found, at least in part, to result from infections at an older age by a typical BSE agent, rather than neonatal infections with new "strains" of BSE. Neither alternative has yet been investigated.


http://www.cdc.gov/ncidod/EID/vol12no12/06-0965.htm



http://madcowtesting.blogspot.com/2009/02/report-on-testing-ruminants-for-tses-in.html




snip...

please see full text ;



http://prionunitusaupdate2008.blogspot.com/2009/04/r-calf-and-usa-mad-cow-problem-dont.html




http://prionunitusaupdate2008.blogspot.com/2009/04/cjd-foundation-sides-with-r-calfers-no.html




http://prionunitusaupdate2008.blogspot.com/2009/04/cjd-foundation-sides-with-r-calfers-no.html#comments




Wednesday, July 28, 2010

re-Freedom of Information Act Project Number 3625-32000-086-05, Study of Atypical BSE UPDATE July 28, 2010


http://bse-atypical.blogspot.com/2010/07/re-freedom-of-information-act-project.html




Wednesday, July 28, 2010 Atypical prion proteins and IBNC in cattle DEFRA project code SE1796 FOIA Final report


http://bse-atypical.blogspot.com/2010/07/atypical-prion-proteins-and-ibnc-in.html



Wednesday, March 31, 2010

Atypical BSE in Cattle North America


http://bse-atypical.blogspot.com/2010/03/atypical-bse-in-cattle-position-post.html



*****URGENT NOTE HERE ABOUT OIE AND ATYPICAL BSE*****

To date the OIE/WAHO assumes that the human and animal health standards set out in the BSE chapter for classical BSE (C-Type) applies to all forms of BSE which include the H-type and L-type atypical forms. This assumption is scientifically not completely justified and accumulating evidence suggests that this may in fact not be the case. Molecular characterization and the spatial distribution pattern of histopathologic lesions and immunohistochemistry (IHC) signals are used to identify and characterize atypical BSE. Both the L-type and H-type atypical cases display significant differences in the conformation and spatial accumulation of the disease associated prion protein (PrPSc) in brains of afflicted cattle. Transmission studies in bovine transgenic and wild type mouse models support that the atypical BSE types might be unique strains because they have different incubation times and lesion profiles when compared to C-type BSE. When L-type BSE was inoculated into ovine transgenic mice and Syrian hamster the resulting molecular fingerprint had changed, either in the first or a subsequent passage, from L-type into C-type BSE. In addition, non-human primates are specifically susceptible for atypical BSE as demonstrated by an approximately 50% shortened incubation time for L-type BSE as compared to C-type. Considering the current scientific information available, it cannot be assumed that these different BSE types pose the same human health risks as C-type BSE or that these risks are mitigated by the same protective measures.


http://www.prionetcanada.ca/detail.aspx?menu=5&dt=293380&app=93&cat1=387&tp=20&lk=no&cat2




Tuesday, August 03, 2010

Variably protease-sensitive prionopathy: A new sporadic disease of the prion protein


http://creutzfeldt-jakob-disease.blogspot.com/2010/08/variably-protease-sensitive-prionopathy.html




Friday, November 30, 2007

CJD QUESTIONNAIRE USA CWRU AND CJD FOUNDATION


http://cjdquestionnaire.blogspot.com/





TSS

Labels: , , , ,