Monday, June 22, 2009

PrPTSE in muscle-associated lymphatic tissue during the preclinical stage of mice orally-infected with BSE

Published online ahead of print on 17 June 2009 as doi:10.1099/vir.0.010801-0 J Gen Virol (2009), DOI 10.1099/vir.0.010801-0 © 2009 Society for General Microbiology

PrPTSE in muscle-associated lymphatic tissue during the preclinical stage of mice orally-infected with BSE

Franco Cardone1,6, Achim Thomzig2, Walter J Schulz-Schaeffer3, Angelina Valanzano1, Marco Sbriccoli1, Hanin Abdel-Haq1, Silvia Graziano1, Maria Puopolo1, Paul Brown4, Michael Beekes5 and Maurizio Pocchiari1

1 Istituto Superiore di Sanità; 2 Robert Koch-Institut, Berlin, Germany; 3 Georg-August University, Goettingen, Germany; 4 None; 5 RKI

6 E-mail: mhtml:%7B33B38F65-8D2E-434D-8F9B-8BDCD77D3066%7Dmid://00000248/!x-usc:mailto:franco.cardone@iss.it

The involvement of muscles in the pathogenesis of transmissible spongiform encephalopathies (TSE) is irregular and unpredictable. We show that the TSE-specific protein (PrPTSE) is present in muscles of mice fed with a mouse-adapted strain of bovine spongiform encephalopathy (BSE) as early as 100 days post infection, corresponding to about one third of the incubation period. The proportion of mice with positive muscles and the number of muscles involved increased as infection progressed, but never attained more than limited distribution even at the clinical stage of disease. The appearance of PrPTSE in muscles during the pre-clinical stage of disease was likely due to the haematogenous/lymphatic spread of infectivity from the gastro-intestinal tract to lymphatic tissues associated with muscles, whereas in symptomatic animals the presence of PrPTSE in the nervous system, in neuromuscular junctions, and in muscle fibers suggests a centrifugal spread from the CNS as already observed in other TSE models.

Received 4 February 2009; accepted 17 June 2009.



http://vir.sgmjournals.org/cgi/content/abstract/vir.0.010801-0v1




Greetings,



some past studies ;




Muscle tissue has recently been detected with PrPSc

in the peripheral nerves (sciatic nerve, tibial nerve, vagus nerve) of the 11th BSE

cow in Japan (Yoshifumi Iwamaru et al). also recently, Aguzzi et al Letter to the Editor

Vet Pathol 42:107-108 (2005), Prusiner et al CDI test is another example of detection

of the TSE agent in muscle in sCJD, Herbert Budka et al CJD and inclusion body myositis:

Abundant Disease-Associated Prion Protein in Muscle, and older studies from Watson

Meldrum et al Scrapie agent in muscle - Pattison I A (1990), references as follow ;

PrPSc distribution of a natural case of bovine

spongiform encephalopathy

Yoshifumi Iwamaru, Yuka Okubo, Tamako Ikeda, Hiroko Hayashi, Mori-

kazu Imamura, Takashi Yokoyama and Morikazu Shinagawa

Priori Disease Research Center, National Institute of Animal Health, 3-1-5

Kannondai, Tsukuba 305-0856 Japan mhtml:%7B33B38F65-8D2E-434D-8F9B-8BDCD77D3066%7Dmid://00000248/!x-usc:mailto:gan@affrc.go.jp


Abstract


Bovine spongiform encephalopathy (BSE) is a disease of cattle that causes

progressive neurodegeneration of the central nervous system. Infectivity

of BSE agent is accompanied with an abnormal isoform of prion protein

(PrPSc).

The specified risk materials (SRM) are tissues potentially carrying BSE

infectivity. The following tissues are designated as SRM in Japan: the

skull including the brain and eyes but excluding the glossa and the masse-

ter muscle, the vertebral column excluding the vertebrae of the tail, spinal

cord, distal illeum. For a risk management step, the use of SRM in both

animal feed or human food has been prohibited. However, detailed

PrPSc distribution remains obscure in BSE cattle and it has caused con-

troversies about definitions of SRM. Therefore we have examined PrPSc

distribution in a BSE cattle by Western blotting to reassess definitions of

SRM.

The 11th BSE case in Japan was detected in fallen stock surveillance.

The carcass was stocked in the refrigerator. For the detection of PrPSc,

200 mg of tissue samples were homogenized. Following collagenase

treatment, samples were digested with proteinase K. After digestion,

PrPSc was precipitated by sodium phosphotungstate (PTA). The pellets

were subjected to Western blotting using the standard procedure.

Anti-prion protein monoclonal antibody (mAb) T2 conjugated horseradish

peroxidase was used for the detection of PrPSc.

PrPSc was detected in brain, spinal cord, dorsal root ganglia, trigeminal

ganglia, sublingual ganglion, retina. In addition, PrPSc was also detected

in the peripheral nerves (sciatic nerve, tibial nerve, vagus nerve).

Our results suggest that the currently accepted definitions of SRM in

BSE cattle may need to be reexamined. ...

179

T. Kitamoto (Ed.)

PRIONS

Food and Drug Safety


================


ALSO from the International Symposium of Prion Diseases held in Sendai, October 31, to

November 2, 2004;

Bovine spongiform encephalopathy (BSE) in Japan

snip...

"Furthermore, current studies into transmission of cases of BSE that are

atypical or that develop in young cattle are expected to amplify the BSE

prion"

NO. Date conf. Farm Birth place and Date Age at diagnosis

8. 2003.10.6. Fukushima Tochigi 2001.10.13. 23

9. 2003.11.4. Hiroshima Hyogo 2002.1.13. 21

Test results

# 8b, 9c cows Elisa Positive, WB Positive, IHC negative, histopathology

negative

b = atypical BSE case

c = case of BSE in a young animal

b,c, No PrPSc on IHC, and no spongiform change on histology

International Symposium of Prion Diseases held in Sendai, October 31, to

November 2, 2004.

The hardback book title is 'PRIONS' Food and Drug Safety

T. Kitamoto (Ed.)

Tetsuyuki Kitamoto

Professor and Chairman

Department of Prion Research

Tohoku University School of Medicine

2-1 SeiryoAoba-ku, Sendai 980-8575, JAPAN

TEL +81-22-717-8147 FAX +81-22-717-8148

e-mail; mhtml:%7B33B38F65-8D2E-434D-8F9B-8BDCD77D3066%7Dmid://00000248/!x-usc:mailto:kitamoto@mail.tains.tohoku.ac.jp

Symposium Secretariat

Kyomi Sasaki

TEL +81-22-717-8233 FAX +81-22-717-7656

e-mail: mhtml:%7B33B38F65-8D2E-434D-8F9B-8BDCD77D3066%7Dmid://00000248/!x-usc:mailto:kvomi-sasaki@mail.tains.tohoku.ac.ip


================================




http://www.regulations.gov/fdmspublic/ContentViewer?objectId=0900006480086ebc&disposition=attachment&contentType=msw6




http://www.scribd.com/doc/1490709/USDA-200600111



Detection and Localization of PrPSc in the Skeletal Muscle


Thu Mar 2, 2006 10:40 70.110.86.250

© 2006 American Society for Investigative Pathology

Detection and Localization of PrPSc in the Skeletal Muscle of Patients with Variant, Iatrogenic, and Sporadic Forms of Creutzfeldt-Jakob Disease Alexander H. Peden, Diane L. Ritchie, Mark W. Head and James W. Ironside From the National Creutzfeldt-Jakob Disease Surveillance Unit and Division of Pathology, School of Molecular and Clinical Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom

Variant Creutzfeldt-Jakob disease (vCJD) differs from other human prion diseases in that the pathogenic prion protein PrPSc can be detected to a greater extent at extraneuronal sites throughout the body, principally within lymphoid tissues. However, a recent study using a high-sensitivity Western blotting technique revealed low levels of PrPSc in skeletal muscle from a quarter of Swiss patients with sporadic CJD (sCJD). This posed the question of whether PrPSc in muscle could also be detected in vCJD, sCJD, and iatrogenic (iCJD) patients from other populations. Therefore, we have used the same high-sensitivity Western blotting technique, in combination with paraffin-embedded tissue blotting, to screen for PrPSc in muscle tissue specimens taken at autopsy from 49 CJD patients in the United Kingdom. These techniques identified muscle PrPSc in 8 of 17 vCJD, 7 of 26 sCJD, and 2 of 5 iCJD patients. Paraffin-embedded tissue blotting analysis showed PrPSc in skeletal muscle in localized anatomical structures that had the morphological and immunohistochemical characteristics of nerve fibers. The detection of PrPSc in muscle tissue from all forms of CJD indicates the possible presence of infectivity in these tissues, suggesting important implications for assessing the potential risk of iatrogenic spread via contaminated surgical instruments.



http://ajp.amjpathol.org/cgi/content/abstract/168/3/927



EMBO Rep. 2003 May; 4(5): 530–533. Published online 2003 April 11. doi: 10.1038/sj.embor.embor827. PMCID: PMC1319182

Copyright © 2003, European Molecular Biology Organisation Scientific Report Widespread PrPSc accumulation in muscles of hamsters orally infected with scrapie Achim Thomzig,1 Christine Kratzel,1 Gudrun Lenz,1 Dominique Krüger,1 and Michael Beekes1a 1Robert Koch-Institut, P26, Nordufer 20, D-13353 Berlin, Germany aTel: +49 30 4547 2396; Fax: +49 30 4547 2609; Email: mhtml:%7B33B38F65-8D2E-434D-8F9B-8BDCD77D3066%7Dmid://00000248/!x-usc:mailto:BeekesM@rki.de Received February 13, 2003; Revised March 11, 2003; Accepted March 13, 2003. This article has been cited by other articles in PMC.

AbstractScrapie, bovine spongiform encephalopathy and chronic wasting disease are orally communicable, transmissible spongiform encephalopathies (TSEs). As zoonotic transmissions of TSE agents may pose a risk to human health, the identification of reservoirs for infectivity in animal tissues and their exclusion from human consumption has become a matter of great importance for consumer protection. In this study, a variety of muscles from hamsters that were orally challenged with scrapie was screened for the presence of a molecular marker for TSE infection, PrPSc (the pathological isoform of the prion protein PrP). Sensitive western blotting revealed consistent PrPSc accumulation in skeletal muscles from forelimb and hindlimb, head, back and shoulder, and in tongue. Previously, our animal model has provided substantial baseline information about the peripheral routing of infection in naturally occurring and orally acquired ruminant TSEs. Therefore, the findings described here highlight further the necessity to investigate thoroughly whether muscles of TSE-infected sheep, cattle, elk and deer contain infectious agent



http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1319182



Prions in Skeletal Muscles of Deer with Chronic Wasting Disease


Rachel C. Angers,1* Shawn R. Browning,1*† Tanya S. Seward,2 Christina J. Sigurdson,4‡ Michael W. Miller,5 Edward A. Hoover,4 Glenn C. Telling1,2,3§

1Department of Microbiology, Immunology and Molecular Genetics, 2Sanders Brown Center on Aging, 3Department of Neurology, University of Kentucky, Lexington, KY 40536, USA. 4Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA. 5Colorado Division of Wildlife, Wildlife Research Center, Fort Collins, CO 80526, USA.

*These authors contributed equally to this work.

†Present address: Department of Infectology, Scripps Research Institute, 5353 Parkside Drive, RF-2, Jupiter, Florida, 33458, USA.

‡Present address: Institute of Neuropathology, University of Zurich, Schmelzbergstrasse 12, 8091 Zurich, Switzerland.

§To whom correspondence should be addressed: E-mail: mhtml:%7B33B38F65-8D2E-434D-8F9B-8BDCD77D3066%7Dmid://00000248/!x-usc:mailto:gtell2@uky.edu

Prions are transmissible proteinaceous agents of mammals that cause fatal neurodegenerative diseases of the central nervous system (CNS). The presence of infectivity in skeletal muscle of experimentally infected mice raised the possibility that dietary exposure to prions might occur through meat consumption (1). Chronic wasting disease (CWD), an enigmatic and contagious prion disease of North American cervids, is of particular concern. The emergence of CWD in an increasingly wide geographic area and the interspecies transmission of bovine spongiform encephalopathy (BSE) to humans as variant Creutzfeldt Jakob disease (vCJD) have raised concerns about zoonotic transmission of CWD.

To test whether skeletal muscle of diseased cervids contained prion infectivity, Tg(CerPrP)1536 mice (2) expressing cervid prion protein (CerPrP), were inoculated intracerebrally with extracts prepared from the semitendinosus/semimembranosus muscle group of CWD-affected mule deer or from CWD-negative deer. The availability of CNS materials also afforded direct comparisons of prion infectivity in skeletal muscle and brain. All skeletal muscle extracts from CWD-affected deer induced progressive neurological dysfunction in Tg(CerPrP)1536 mice with mean incubation times ranging between 360 and ~490 d, whereas the incubation times of prions from the CNS ranged from ~230 to 280 d (Table 1). For each inoculation group, the diagnosis of prion disease was confirmed by the presence of PrPSc in the brains of multiple infected Tg(CerPrP)1536 mice (see supporting online material for examples). In contrast, skeletal muscle and brain material from CWD-negative deer failed to induce disease in Tg(CerPrP)1536 mice (Table 1) and PrPSc was not detected in the brains of sacrificed asymptomatic mice as late as 523 d after inoculation (supporting online material).

Our results show that skeletal muscle as well as CNS tissue of deer with CWD contains infectious prions. Similar analyses of skeletal muscle BSE-affected cattle did not reveal high levels of prion infectivity (3). It will be important to assess the cellular location of PrPSc in muscle. Notably, while PrPSc has been detected in muscles of scrapie-affected sheep (4), previous studies failed to detect PrPSc by immunohistochemical analysis of skeletal muscle from deer with natural or experimental CWD (5, 6). Since the time of disease onset is inversely proportional to prion dose (7), the longer incubation times of prions from skeletal muscle extracts compared to matched brain samples indicated that prion titers were lower in muscle than in CNS where infectivity titers are known to reach high levels. Although possible effects of CWD strains or strain mixtures on these incubation times cannot be excluded, the variable 360 to ~490 d incubation times suggested a range of prion titers in skeletal muscles of CWD-affected deer. Muscle prion titers at the high end of the range produced the fastest incubation times that were ~30% longer than the incubation times of prions from the CNS of the same animal. Since all mice in each inoculation group developed disease, prion titers in muscle samples producing the longest incubation times were higher than the end point of the bioassay, defined as the infectious dose at which half the inoculated mice develop disease. Studies are in progress to accurately assess prion titers.

While the risk of exposure to CWD infectivity following consumption of prions in muscle is mitigated by relatively inefficient prion transmission via the oral route (8), these

results show that semitendinosus/semimembranosus muscle, which is likely to be consumed by humans, is a significant source of prion infectivity. Humans consuming or handling meat from CWD-infected deer are therefore at risk to prion exposure.

References and Notes

1. P. J. Bosque et al., Proc. Natl. Acad. Sci. U.S.A. 99, 3812 (2002).

2. S. R. Browning et al., J. Virol. 78, 13345 (2004).

3. A. Buschmann, M. H. Groschup, J. Infect. Dis. 192, 934 (2005).

4. O. Andreoletti et al., Nat. Med. 10, 591 (2004).

5. T. R. Spraker et al., Vet. Pathol. 39, 110 (2002).

6. A. N. Hamir, J. M. Miller, R. C. Cutlip, Vet. Pathol. 41, 78 (2004).

7. S. B. Prusiner et al., Biochemistry 21, 4883 (1980).

8. M. Prinz et al., Am. J. Pathol. 162, 1103 (2003).

9. This work was supported by grants from the U.S. Public Health Service 2RO1 NS040334-04 from the National Institute of Neurological Disorders and Stroke and N01-AI-25491 from the National Institute of Allergy and Infectious Diseases.

Supporting Online Material



www.sciencemag.org/



Materials and Methods

Fig. S1

21 November 2005; accepted 13 January 2006 Published online 26 January 2006; 10.1126/science.1122864 Include this information when citing this paper.

Table 1. Incubation times following inoculation of Tg(CerPrP)1536 mice with prions from skeletal muscle and brain samples of CWD-affected deer.

Inocula Incubation time, mean d ± SEM (n/n0)*

Skeletal muscle Brain

CWD-affected deer

H92 360 ± 2 d (6/6) 283 ± 7 d (6/6)

33968 367 ± 9 d (8/8) 278 ± 11 d (6/6)

5941 427 ± 18 d (7/7)

D10 483 ± 8 d (8/8) 231 ± 17 d (7/7)

D08 492 ± 4 d (7/7)

Averages 426 d 264 d

Non-diseased deer

FPS 6.98 >523 d (0/6)

FPS 9.98 >454 d (0/7) >454 d (0/6)

None >490 d (0/6)

PBS >589 d (0/5)

*The number of mice developing prion disease divided by the original number of inoculated mice is shown in parentheses. Mice dying of intercurrent illnesses were excluded.



http://www.sciencemag.org/



www.sciencemag.org/



Supporting Online Material for

Prions in Skeletal Muscles of Deer with Chronic Wasting Disease

Rachel C. Angers, Shawn R. Browning, Tanya S. Seward, Christina J. Sigurdson,

Michael W. Miller, Edward A. Hoover, Glenn C. Telling§

§To whom correspondence should be addressed: E-mail: mhtml:%7B33B38F65-8D2E-434D-8F9B-8BDCD77D3066%7Dmid://00000248/!x-usc:mailto:gtell2@uky.edu

Published 26 January 2006 on Science Express

DOI: 10.1126/science.1122864

This PDF file includes:

Materials and Methods

Fig. S1

Supporting Online Materials

Materials and Methods

Homogenates of semitendinosus/semimembranosus muscle (10% w/v in phosphate

buffered saline) were prepared from five emaciated and somnolent mule deer, naturally

infected with CWD at the Colorado Division of Wildlife, Wildlife Research Center.

These deer were identified as D10, D08, 33968, H92, and 5941. CWD infection was

confirmed in all cases by the presence of histologic lesions in the brain including

spongiform degeneration of the perikaryon, the immunohistochemical detection of

disease-associated PrP in brain and tonsil, or by immunoblotting of protease-resistant,

disease associated PrP (CerPrPSc). Semitendinosus/semimembranosus muscle was also

obtained from two asymptomatic, mock inoculated deer, referred to as FPS 6.68 and 9.98,

that originated from a CWD non-endemic area and which were held indoors at Colorado

State University from ten days of age. These control deer were confirmed negative for

CWD by histopathological and immunohistochemical analysis of brain tissue at autopsy.

The utmost care was taken to avoid inclusion of obvious nervous tissue when muscle

biopsies were prepared and to ensure that contamination of skeletal muscle samples with

CNS tissue did not occur. Fresh, single-use instruments were used to collect each sample

biopsy and a central piece from each sample was prepared with fresh, disposable

instruments to further isolate muscle tissue for inoculum preparation. Brain samples for

transmission were prepared separately from muscle as additional insurance against cross

contamination.

1

Groups of anesthetized Tg(CerPrP)1536 mice were inoculated intracerebrally with 30 µl

of 1 % skeletal muscle or brain extracts prepared in phosphate buffered saline (PBS).

Inoculated Tg(CerPrP) mice were diagnosed with prion disease following the progressive

development of at least three neurologic symptoms including truncal ataxia, 'plastic' tail,

loss of extensor reflex, difficultly righting, and slowed movement. The time from

inoculation to the onset of clinical signs is referred to as the incubation time.

For PrP analysis in brain extracts of Tg(CerPrP)1536 mice, 10 % homogenates prepared

in PBS were either untreated (-) or treated (+) with 40 µg/ml proteinase K (PK) for one

hour at 37oC in the presence of 2% sarkosyl. Proteins were separated by sodium dodecyl

sulfate polyacrylamide gel electrophoresis, analyzed by immunoblotting using anti PrP

monoclonal antibody 6H4 (Prionics AG, Switzerland), incubated with appropriate

secondary antibody, developed using ECL-plus detection (Amersham), and analyzed

using a FLA-5000 scanner (Fuji).

2

Fig. S1

PrP in brain extracts from representative Tg(CerPrP)1536 mice receiving muscle or CNS

tissue inocula from CWD-affected or CWD-negative deer. Extracts were either treated

(+) or untreated (-) with proteinase K (PK) as indicated. The positions of protein

molecular weight markers at 21.3, 28.7, 33.5 kDa (from bottom to top) are shown to the

left of the immunoblot.

3



http://www.sciencemag.org/



Prions in skeletal muscle



Patrick J. Bosque*,dagger ,Dagger , Chongsuk Ryou*, Glenn Telling*,§, David Peretz*,dagger , Giuseppe Legname*,dagger , Stephen J. DeArmond*,dagger ,¶, and Stanley B. Prusiner*,dagger ,,**

* Institute for Neurodegenerative Diseases and Departments of dagger Neurology, ¶ Pathology, and Biochemistry and Biophysics, University of California, San Francisco, CA 94143

Contributed by Stanley B. Prusiner, December 28, 2001

Considerable evidence argues that consumption of beef products from cattle infected with bovine spongiform encephalopathy (BSE) prions causes new variant Creutzfeldt-Jakob disease. In an effort to prevent new variant Creutzfeldt-Jakob disease, certain "specified offals," including neural and lymphatic tissues, thought to contain high titers of prions have been excluded from foods destined for human consumption [Phillips, N. A., Bridgeman, J. & Ferguson-Smith, M. (2000) in The BSE Inquiry (Stationery Office, London), Vol. 6, pp. 413-451]. Here we report that mouse skeletal muscle can propagate prions and accumulate substantial titers of these pathogens. We found both high prion titers and the disease-causing isoform of the prion protein (PrPSc) in the skeletal muscle of wild-type mice inoculated with either the Me7 o Rocky Mountain Laboratory strain of murine prions. Particular muscles accumulated distinct levels of PrPSc, with the highest levels observed in muscle from the hind limb. To determine whether prions are produced or merely accumulate intramuscularly, we established transgenic mice expressing either mouse or Syrian hamster PrP exclusively in muscle. Inoculating these mice intramuscularly with prions resulted in the formation of high titers of nascent prions in muscle. In contrast, inoculating mice in which PrP expression was targeted to hepatocytes resulted in low prion titers. Our data demonstrate that factors in addition to the amount of PrP expressed determine the tropism of prions for certain tissues. That some muscles are intrinsically capable of accumulating substantial titers of prions is of particular concern. Because significant dietary exposure to prions might occur through the consumption of meat, even if it is largely free of neural and lymphatic tissue, a comprehensive effort to map the distribution of prions in the muscle of infected livestock is needed. Furthermore, muscle may provide a readily biopsied tissue from which to diagnose prion disease in asymptomatic animals and even humans. Dagger Present address: Department of Medicine, Denver Health Medical Center, Denver, CO 80204.

§ Present address: Department of Microbiology and Immunology, University of Kentucky, Lexington, KY 40536-0230.

** To whom reprint requests should be addressed. E-mail: mhtml:%7B33B38F65-8D2E-434D-8F9B-8BDCD77D3066%7Dmid://00000248/!x-usc:mailto:vann@cgl.ucsf.edu.



http://www.pnas.org/



Extraneural Pathologic Prion Protein in Sporadic Creutzfeldt-Jakob Disease



Markus Glatzel, M.D., Eugenio Abela, Manuela Maissen, M.S., and Adriano Aguzzi, M.D., Ph.D.

snip...

Conclusions Using sensitive techniques, we identified extraneural deposition of PrPSc in spleen and muscle samples from approximately one third of patients who died with sporadic Creutzfeldt-Jakob disease. Extraneural PrPSc appears to correlate with a long duration of disease.



http://content.nejm.org/cgi/content/short/349/19/1812?query=TOC



EMBO reports AOP Published online: 11 April 2003



Widespread PrPSc accumulation in muscles of hamsters orally infected with scrapie



Achim Thomzig, Christine Kratzel, Gudrun Lenz, Dominique KrÒ¼ger & Michael Beekes Robert Koch-Institut, P26, Nordufer 20, D-13353 Berlin, Germany

Received 13 February 2003; Accepted 13 March 2003; Published online 11 April 2003.

Abstract :

Scrapie, bovine spongiform encephalopathy and chronic wasting disease are orally communicable, transmissible spongiform encephalopathies (TSEs). As zoonotic transmissions of TSE agents may pose a risk to human health, the identification of reservoirs for infectivity in animal tissues and their exclusion from human consumption has become a matter of great importance for consumer protection. In this study, a variety of muscles from hamsters that were orally challenged with scrapie was screened for the presence of a molecular marker for TSE infection, PrPSc (the pathological isoform of the prion protein PrP). Sensitive western blotting revealed consistent PrPSc accumulation in skeletal muscles from forelimb and hindlimb, head, back and shoulder, and in tongue. Previously, our animal model has provided substantial baseline information about the peripheral routing of infection in naturally occurring and orally acquired ruminant TSEs. Therefore, the findings described here highlight further the necessity to investigate thoroughly whether muscles of TSE-infected sheep, cattle, elk and deer contain infectious agents.



http://www.emboreports.org/



Detection of Prion Infectivity in Fat Tissues of Scrapie-Infected Mice

Brent Race1#, Kimberly Meade-White1#, Michael B. A. Oldstone2, Richard Race1, Bruce Chesebro1*

1 Laboratory of Persistent Virus Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America, 2 Department of Immunology and Microbial Science, The Scripps Research Institute, LaJolla, California, United States of America

Abstract Distribution of prion infectivity in organs and tissues is important in understanding prion disease pathogenesis and designing strategies to prevent prion infection in animals and humans. Transmission of prion disease from cattle to humans resulted in banning human consumption of ruminant nervous system and certain other tissues. In the present study, we surveyed tissue distribution of prion infectivity in mice with prion disease. We show for the first time detection of infectivity in white and brown fat. Since high amounts of ruminant fat are consumed by humans and also incorporated into animal feed, fat-containing tissues may pose a previously unappreciated hazard for spread of prion infection.

Author Summary Prion diseases, also known as transmissible spongiform encephalopathies, are infectious progressive fatal neurodegenerative diseases which affect humans as well as wild and domestic animals. Distribution of prion infectivity in organs and tissues is important in understanding prion disease pathogenesis and designing strategies to prevent prion infection in animals and humans. We show for the first time the presence of prion infectivity in white fat and brown fat tissues of mice with prion disease. Our results suggest that fat tissues of domestic or wild animals infected with prions may pose an unappreciated hazard for spread of infection to humans or domestic animals. The presence of prion infectivity in fat suggests that additional consideration may be required to eliminate from the food chain any fat from ruminants suspected of exposure to or infection with prions. Thus, this finding has implications for public health, food safety, and prion disease prevention strategies.

Citation: Race B, Meade-White K, Oldstone MBA, Race R, Chesebro B (2008) Detection of Prion Infectivity in Fat Tissues of Scrapie-Infected Mice. PLoS Pathog 4(12): e1000232. doi:10.1371/journal.ppat.1000232

Editor: Neil Mabbott, University of Edinburgh, United Kingdom

Received: August 12, 2008; Accepted: November 5, 2008; Published: December 5, 2008

This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.

Funding: This research was supported in part by the Intramural Research Program of the NIH, NIAID. MBAO was funded through NIA grant AG04032.

Competing interests: The authors have declared that no competing interests exist.

* E-mail: mhtml:%7B33B38F65-8D2E-434D-8F9B-8BDCD77D3066%7Dmid://00000248/!x-usc:mailto:bchesebro@nih.gov

# These authors contributed equally to this work.

Introduction

snip...

Discussion The present results indicate that white fat and brown fat are possible tissue sources of prion infectivity which might play a role in transmission of prion disease. In vivo brown fat has a limited distribution, usually found in young animals in the intrascapular region and around various organs such as heart and kidney. In adult ruminants brown fat is minimal. Therefore, brown fat from infected animals is unlikely to be consumed by humans in large amounts. In contrast, humans often consume large amounts of ruminant white fat. In premium cuts of meat containing mostly skeletal muscle, white fat is often intertwined with muscle cells, and it is impossible to separate the two cell types. However, white fat, free of muscle, is found in subcutaneous, retroperitoneal, intraperitoneal, perirenal and other regions. Such fat is used in many processed meat products such as sausages and canned meats, and is also used in animal feeds. Our present data show clearly that fat in the absence of muscle has significant infectivity titers, which are similar to titers in muscle containing fat (Table 1). Since our skeletal muscle samples are unavoidably contaminated by white fat, it is possible that fat might be a contributor to the infectivity found in muscle. In support of this possibility we found PrPres detectable by IHC at high levels in white fat associated with skeletal muscle in some tg44 mice (Figure 4). In contrast, other groups did not mention seeing PrPres in muscle-associated fat tissue in animals where myocytes themselves were seen to be positive by IHC [13]-[20].

snip...

It is unclear why there is accumulation of PrPres and infectivity in adipose tissues. One possibility might be the high level of innervation by the autonomic nervous system in both brown and white fat. In WT mice, nerves should express cell membrane anchored PrPC (PrPsen). Sympathetic nerves have been previously implicated in transfer of scrapie infectivity from spleen to brain in mice [29], and they might also play a role in infection of fat in WT mice. In tg44 mice the mechanism of fat infection is likely to be different as there is no anchored PrPsen on the nerves. We currently postulate a role for connective tissue structures in this process.

Infectivity in fat might also contribute to environmental contamination following the death of prion infected animals. Although infectivity titers are lower in fat and muscle than in CNS, the large mass of fat and muscle makes the total infectivity from these sources similar. Furthermore, fat and muscle are readily accessible to the environment after death, whereas the CNS is highly confined in skull and vertebral column. These factors might increase the importance of fat and muscle as sources of spread of prion disease among animals.

The low or negative plasma titers found in tg44 and WT mice indicate that residual plasma cannot account for the high infectivity levels seen in fat and other tissues (Table 1). However, low levels of plasma or blood-borne infectivity might still be a mechanism for spread of infectivity among tissues in tg44 mice and possibly also WT mice. Similarly transmission of low level blood prion infectivity has been documented by blood transfusion in BSE-infected sheep [30], and also accounts for some rare cases of human variant CJD [31],[32].

In this study extraneural infection was much higher in tg44 mice expressing anchorless PrP than in WT mice. The explanation of this finding is unclear. Possibly soluble anchorless PrP facilitates spread of infection from CNS to extraneural sites by blood, lymph or nerve-mediated transport. Alternatively, the long asymptomatic survival time of tg44 mice might also contribute to high level extraneural infection. This could also be a factor in many animal prion diseases where the time course is long, i.e. 2-5 years or more, and might allow higher extraneural infectivity in fat tissues [7], [33]-[35].

The present data using a mouse model shows the proof of principle that brown and white fat tissues can be important sites of prion agent deposition. It will be important to extend these studies in the future to prion infected large animals such as cattle, sheep and cervids where there may be greater potential for contamination of human or domestic animal food chains. We are currently doing this experiment with fat from CWD deer; however, it will require an additional year to gather this data, and this result is therefore beyond the scope of the present paper. Such studies may be difficult because of the lower titers seen in these large animals compared to rodent scrapie models. For example, we often detect titers of 9-10 logID50/gram of mouse brain, whereas in brain from BSE cattle [8], and scrapie sheep [4] titers reported are 7-8 logID50/gram. We are finding similar low titers in CWD cervid brain in our deer PrP transgenic mice (unpublished data). These results could indicate either that the amount of prion agent present in ruminant brain is lower than in mice and hamsters or that the cattle, sheep and deer PrP transgenic mice used for infectivity assays are less sensitive than the WT mice or hamster PrP transgenic mice used for rodent scrapie. In either case this might affect ability to detect infectivity in fat of these important large animal models.

Materials and Methods

snip...full text ;



http://www.plospathogens.org/article/info%3Adoi%2F10.1371%2Fjournal.ppat.1000232



Research Project: Study of Atypical Bse Location: Virus and Prion Diseases of Livestock


Project Number: 3625-32000-086-05 Project Type: Specific Cooperative Agreement

Start Date: Sep 15, 2004 End Date: Sep 14, 2009

Objective: The objective of this cooperative research project with Dr. Maria Caramelli from the Italian BSE Reference Laboratory in Turin, Italy, is to conduct comparative studies with the U.S. bovine spongiform encephalopathy (BSE) isolate and the atypical BSE isolates identified in Italy. The studies will cover the following areas: 1. Evaluation of present diagnostics tools used in the U.S. for the detection of atypical BSE cases. 2. Molecular comparison of the U.S. BSE isolate and other typical BSE isolates with atypical BSE cases. 3. Studies on transmissibility and tissue distribution of atypical BSE isolates in cattle and other species.

Approach: This project will be done as a Specific Cooperative Agreement with the Italian BSE Reference Laboratory, Istituto Zooprofilattico Sperimentale del Piemonte, in Turin, Italy. It is essential for the U.S. BSE surveillance program to analyze the effectiveness of the U.S diagnostic tools for detection of atypical cases of BSE. Molecular comparisons of the U.S. BSE isolate with atypical BSE isolates will provide further characterization of the U.S. BSE isolate. Transmission studies are already underway using brain homogenates from atypical BSE cases into mice, cattle and sheep. It will be critical to see whether the atypical BSE isolates behave similarly to typical BSE isolates in terms of transmissibility and disease pathogenesis. If transmission occurs, tissue distribution comparisons will be made between cattle infected with the atypical BSE isolate and the U.S. BSE isolate. Differences in tissue distribution could require new regulations regarding specific risk material (SRM) removal.



http://www.ars.usda.gov/research/projects/projects.htm?accn_no=408490



----- Original Message -----

From: Terry S. Singeltary Sr. To: mhtml:%7B33B38F65-8D2E-434D-8F9B-8BDCD77D3066%7Dmid://00000248/!x-usc:mailto:justin.greenlee@ars.usda.gov

Sent: Monday, June 15, 2009 4:30 PM

Subject: re-Research Project: Study of Atypical Bse


re-Research Project: Study of Atypical Bse



http://www.ars.usda.gov/research/projects/projects.htm?ACCN_NO=408490



Greetings Sir,

I have been most interested in these transmission studies, and i know it is probably to early for you to say much about them. but, could you please give me an update of some kind, as to if transmission of any type occured, with any tissues and or body fluids. i suppose i am a bit anxious about these studies. ...

many thanks for your work,

kindest regards, terry



=======end...tss======



???



Monday, June 01, 2009

Biochemical typing of pathological prion protein in aging cattle with BSE



http://bse-atypical.blogspot.com/2009/06/biochemical-typing-of-pathological.html



Sunday, June 07, 2009

L-TYPE-BSE, H-TYPE-BSE, C-TYPE-BSE, IBNC-TYPE-BSE, TME, CWD, SCRAPIE, CJD, NORTH AMERICA



http://bse-atypical.blogspot.com/2009/06/l-type-bse-h-type-bse-c-type-bse-ibnc.html



Sunday, May 10, 2009

Identification and characterization of bovine spongiform encephalopathy cases diagnosed and NOT diagnosed in the United States



http://bse-atypical.blogspot.com/2009/05/identification-and-characterization-of.html



Sunday, December 28, 2008

MAD COW DISEASE USA DECEMBER 28, 2008 an 8 year review of a failed and flawed policy



http://bse-atypical.blogspot.com/2008/12/mad-cow-disease-usa-december-28-2008-8.html



Wednesday, August 20, 2008

Bovine Spongiform Encephalopathy Mad Cow Disease typical and atypical strains, was there a cover-up ?



http://bse-atypical.blogspot.com/2008/08/bovine-spongiform-encephalopathy-mad.html



Saturday, February 28, 2009

NEW RESULTS ON IDIOPATHIC BRAINSTEM NEURONAL CHROMATOLYSIS "All of the 15 cattle tested showed that the brains had abnormally accumulated PrP" 2009 SEAC 102/2



http://bse-atypical.blogspot.com/2009/02/new-results-on-idiopathic-brainstem.html



Saturday, June 13, 2009

BSE FEED VIOLATIONS USA UPDATE From 01/01/2009 To 06/10/2009



http://madcowfeed.blogspot.com/2009/06/bse-feed-violations-usa-update-from.html



Thursday, March 19, 2009

MILLIONS AND MILLIONS OF POUNDS OF MAD COW FEED IN COMMERCE USA



http://madcowfeed.blogspot.com/2009/03/millions-and-millions-of-pounds-of-mad.html



WHO WILL FOLLOW THE CHILDREN FOR CJD SYMPTOMS ???



Saturday, May 2, 2009

U.S. GOVERNMENT SUES WESTLAND/HALLMARK MEAT OVER USDA CERTIFIED DEADSTOCK DOWNER COW SCHOOL LUNCH PROGRAM



http://downercattle.blogspot.com/2009/05/us-government-sues-westlandhallmark.html



Sunday, April 12, 2009

BSE MAD COW TESTING USA 2009 FIGURES Month Number of Tests

Feb 2009 -- 1,891

Jan 2009 -- 4,620



http://www.aphis.usda.gov/newsroom/hot_issues/bse/surveillance/ongoing_surv_results.shtml



SEE FULL TEXT ;



http://madcowtesting.blogspot.com/2009/04/bse-mad-cow-testing-usa-2009-figures.html



Monday, May 4, 2009

Back to the Past With New TSE Testing Agricultural Research/May-June 2009



http://madcowtesting.blogspot.com/2009/05/back-to-past-with-new-tse-testing.html



Thursday, April 9, 2009

Docket No. FDA2002N0031 (formerly Docket No. 2002N0273) RIN 0910AF46 Substances Prohibited From Use in Animal Food or Feed; Final Rule: Proposed



http://madcowfeed.blogspot.com/2009/04/docket-no-fda2002n0031-formerly-docket.html



http://prionunitusaupdate2008.blogspot.com/2009/04/r-calf-and-usa-mad-cow-problem-dont.html#comments



Sunday, April 12, 2009

r-calf and the USA mad cow problem, don't look, don't find, and then blame Canada



http://prionunitusaupdate2008.blogspot.com/2009/04/r-calf-and-usa-mad-cow-problem-dont.html



http://prionunitusaupdate2008.blogspot.com/2009/04/cjd-foundation-sides-with-r-calfers-no.html#comments



Sunday, May 10, 2009

Meeting of the Transmissible Spongiform Encephalopathies Committee On June 12, 2009 (Singeltary submission)



http://tseac.blogspot.com/2009/05/meeting-of-transmissible-spongiform.html



Saturday, June 13, 2009

Monitoring the occurrence of emerging forms of Creutzfeldt-Jakob disease in the United States 2003 revisited 2009

snip...

2006

FOOD AND DRUG ADMINISTRATION

DEPARTMENT OF HEALTH AND HUMAN SERVICES

This transcripts has not been edited or corrected, but appears as received from the commercial transcribing service. Accordingly, the food and Drug Administration makes no representation as to its accuracy.

Meeting of:

TRANSMISSIBLE

SPONGIFORM ENCEPHALOPATHIES

ADVISORY COMMITTEE

September 18, 2006

There is a growing number of human CJD cases, and they were presented last week in San Francisco by Luigi Gambatti(?) from his CJD surveillance collection.

He estimates that it may be up to 14 or 15 persons which display selectively SPRPSC and practically no detected RPRPSC proteins.



http://www.fda.gov/ohrms/dockets/ac/06/transcripts/1006-4240t1.htm



http://www.fda.gov/ohrms/dockets/ac/06/transcripts/2006-4240t1.pdf



2008

I ask Professor Kong ;

Thursday, December 04, 2008 3:37 PM Subject: RE: re--Chronic Wating Disease (CWD) and Bovine Spongiform Encephalopathies (BSE): Public Health Risk Assessment

''IS the h-BSE more virulent than typical BSE as well, or the same as cBSE, or less virulent than cBSE? just curious.....''

Professor Kong reply ;

.....snip

''As to the H-BSE, we do not have sufficient data to say one way or another, but we have found that H-BSE can infect humans. I hope we could publish these data once the study is complete. Thanks for your interest.''

Best regards, Qingzhong Kong, PhD Associate Professor Department of Pathology Case Western Reserve University Cleveland, OH 44106 USA

END...TSS

I look forward to further transmission studies, and a true ENHANCED BSE/atypical BSE surveillance program put forth testing all cattle for human and animal consumption for 5 years. a surveillance program that uses the most sensitive TSE testing, and has the personnel that knows how to use them, and can be trusted. I look forward to a stringent mad cow feed ban being put forth, and then strictly enforced. we need a forced, not voluntary feed ban, an enhanced feed ban at that, especially excluding blood. we need some sort of animal traceability. no more excuses about privacy. if somebody is putting out a product that is killing folks and or has the potential to kill you, then everybody needs to know who they are, and where that product came from. same with hospitals, i think medical incidents in all states should be recorded, and made public, when it comes to something like a potential accidental transmission exposure event. so if someone is out there looking at a place to go have surgery done, if you have several hospitals having these type 'accidental exposure events', than you can go some place else. it only makes sense. somewhere along the road, the consumer lost control, and just had to take whatever they were given, and then charged these astronomical prices. some where along the line the consumer just lost interest, especially on a long incubating disease such as mad cow disease i.e. Transmissible Spongiform Encephalopathy. like i said before, there is much more to the mad cow story than bovines and eating a hamburger, we must start focusing on all TSE in all species. ...TSS



http://bse-atypical.blogspot.com/2009/02/atypical-bse-north-america-update.html



snip... SEE FULL TEXT ;





Sunday, May 10, 2009



Meeting of the Transmissible Spongiform Encephalopathies Committee On June 12, 2009 (Singeltary submission)



http://cjdusa.blogspot.com/2009/06/monitoring-occurrence-of-emerging-forms.html



ALL Human and Animal Transmissible Spongiform Encephalopathy, of all phenotypes, of ALL ages, in EVERY State and INTERNATIONALLY, should be made MANDATORY reportable ASAP. ...



Terry S. Singeltary Sr. P.O. Box 42 Bacliff, Texas USA 77518

Labels: , , , , , ,

Sunday, June 07, 2009

L-TYPE-BSE, H-TYPE-BSE, C-TYPE-BSE, IBNC-TYPE-BSE, TME, CWD, SCRAPIE, CJD, NORTH AMERICA

L-TYPE-BSE, H-TYPE-BSE, C-TYPE-BSE, IBNC-TYPE-BSE, TME, CWD, SCRAPIE, CJD, NORTH AMERICA, something to ponder ;

confusious ask, what if ;


Session I - Prions: Structure, Strain and Detection (II)

Searching for BASE Strain Signature in Sporadic Creutzfedlt-Jakob Disease

Gianluigi Zanusso

Department of Neurological and Visual Sciences, Section of Clinical Neurology University of Verona, Verona, Italy.

Bovine amyloidotic spongiform encephalopathy (BASE) is a newly recognized form of bovine prion disease, which was originally detected in Italy in 2004 as an effect of active surveillance. BASE or BSE L-type (L is referred to the lower electrophoretic PrPSc migration than classical BSE) has now been reported in several countries, including Japan. All field cases of BASE were older than 8 years and neurologically normal at the time of slaughtered. By experimental transmission, we defined the disease phenotype of cattle BASE, which is quite distinct from that seen in typical BSE and characterized by mental dullness and amyotrophy. Surprisingly, following intraspecies and interspecies transmission the incubation period of BASE was shorter than BSE. The relatively easy transmission of BASE isolate as well as the molecular similarity with sporadic Creutzfeldt-Jakob disease (sCJD) have raised concern regarding its potential passage to humans. Tg humanized mice Met/Met at codon 129 challenged with both BSE and BASE isolates, showed a resistance to BSE but a susceptibility to BASE at a 60% rate; in addition, BASE-inoculated Cynomolgus (129 Met/Met) had shorter incubation periods than BSE-inoculated primates. In this study we compared the biochemical properties of PrPSc in Cynomolgus and in TgHu Met/Met mice challenged with BSE and BASE strains, by conventional SDS-PAGE analysis and 2D separation. The results obtained disclose distinct conformational changes in PrPSc, which are dependent on the inoculated host but not on the codon 129 genotype.

This work was supported by Neuroprion contract n. FOOD CT 2004 -506579 (NOE)



http://www.istitutoveneto.it/prion_09/Abstracts_09.pdf




P26

TRANSMISSION OF ATYPICAL BOVINE SPONGIFORM ENCEPHALOPATHY (BSE) IN HUMANIZED MOUSE MODELS

Liuting Qing1, Fusong Chen1, Michael Payne1, Wenquan Zou1, Cristina Casalone2, Martin Groschup3, Miroslaw Polak4, Maria Caramelli2, Pierluigi Gambetti1, Juergen Richt5*, and Qingzhong Kong1

1Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA; 2CEA, Istituto Zooprofilattico Sperimentale, Italy; 3Friedrich-Loeffler-Institut, Germany; 4National Veterinary Research Institute, Poland; 5Kansas State University, Diagnostic Medicine/Pathobiology Department, Manhattan, KS 66506, USA. *Previous address: USDA National Animal Disease Center, Ames, IA 50010, USA

Classical BSE is a world-wide prion disease in cattle, and the classical BSE strain (BSE-C) has led to over 200 cases of clinical human infection (variant CJD). Two atypical BSE strains, BSE-L (also named BASE) and BSE-H, have been discovered in three continents since 2004. The first case of naturally occurring BSE with mutated bovine PrP gene (termed BSE-M) was also found in 2006 in the USA. The transmissibility and phenotypes of these atypical BSE strains/isolates in humans were unknown.

We have inoculated humanized transgenic mice with classical and atypical BSE strains (BSE-C, BSE-L, BSE-H) and the BSE-M isolate. We have found that the atypical BSE-L strain is much more virulent than the classical BSE-C. The atypical BSE-H strain is also transmissible in the humanized transgenic mice with distinct phenotype, but no transmission has been observed for the BSE-M isolate so far.



http://www.istitutoveneto.it/prion_09/Abstracts_09.pdf



Wednesday, February 11, 2009

Atypical BSE North America Update February 2009 Both of the BSE cases ascertained in the US native-born cattle were atypical cases (H-type), which contributed to the initial ambiguity of the diagnosis. 174, 185 In Canada, there have been 2 atypical BSE cases in addition to the 14 cases of the classic UK strain of BSE2: one was the H-type, and the other was of the L-type.198


snip...end


source : Enhanced Abstract Journal of the American Veterinary Medical Association January 1, 2009, Vol. 234, No. 1, Pages 59-72 Bovine spongiform encephalopathy Jane L. Harman, DVM, PhD; Christopher J. Silva, PhD



http://avmajournals.avma.org/doi/ref/10.2460/javma.234.1.59




Atypical BSE North America Update February 2009



http://bse-atypical.blogspot.com/2009/02/atypical-bse-north-america-update.html



Atypical BSE (BASE) Transmitted from Asymptomatic Aging Cattle to a Primate

Emmanuel E. Comoy1*, Cristina Casalone2, Nathalie Lescoutra-Etchegaray1, Gianluigi Zanusso3, Sophie Freire1, Dominique Marcé1, Frédéric Auvré1, Marie-Magdeleine Ruchoux1, Sergio Ferrari3, Salvatore Monaco3, Nicole Salès4, Maria Caramelli2, Philippe Leboulch1,5, Paul Brown1, Corinne I. Lasmézas4, Jean-Philippe Deslys1

1 Institute of Emerging Diseases and Innovative Therapies, CEA, Fontenay-aux-Roses, France, 2 Istituto Zooprofilattico Sperimentale del Piemonte, Turin, Italy, 3 Policlinico G.B. Rossi, Verona, Italy, 4 Scripps Florida, Jupiter, Florida, United States of America, 5 Genetics Division, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America

Abstract Top Background Human variant Creutzfeldt-Jakob Disease (vCJD) results from foodborne transmission of prions from slaughtered cattle with classical Bovine Spongiform Encephalopathy (cBSE). Atypical forms of BSE, which remain mostly asymptomatic in aging cattle, were recently identified at slaughterhouses throughout Europe and North America, raising a question about human susceptibility to these new prion strains.

Methodology/Principal Findings Brain homogenates from cattle with classical BSE and atypical (BASE) infections were inoculated intracerebrally into cynomolgus monkeys (Macacca fascicularis), a non-human primate model previously demonstrated to be susceptible to the original strain of cBSE. The resulting diseases were compared in terms of clinical signs, histology and biochemistry of the abnormal prion protein (PrPres). The single monkey infected with BASE had a shorter survival, and a different clinical evolution, histopathology, and prion protein (PrPres) pattern than was observed for either classical BSE or vCJD-inoculated animals. Also, the biochemical signature of PrPres in the BASE-inoculated animal was found to have a higher proteinase K sensitivity of the octa-repeat region. We found the same biochemical signature in three of four human patients with sporadic CJD and an MM type 2 PrP genotype who lived in the same country as the infected bovine.

Conclusion/Significance Our results point to a possibly higher degree of pathogenicity of BASE than classical BSE in primates and also raise a question about a possible link to one uncommon subset of cases of apparently sporadic CJD. Thus, despite the waning epidemic of classical BSE, the occurrence of atypical strains should temper the urge to relax measures currently in place to protect public health from accidental contamination by BSE-contaminated products.

Citation: Comoy EE, Casalone C, Lescoutra-Etchegaray N, Zanusso G, Freire S, et al. (2008) Atypical BSE (BASE) Transmitted from Asymptomatic Aging Cattle to a Primate. PLoS ONE 3(8): e3017. doi:10.1371/journal.pone.0003017

Editor: Neil Mabbott, University of Edinburgh, United Kingdom

Received: April 24, 2008; Accepted: August 1, 2008; Published: August 20, 2008

Copyright: © 2008 Comoy et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work has been supported by the Network of Excellence NeuroPrion.

Competing interests: CEA owns a patent covering the BSE diagnostic tests commercialized by the company Bio-Rad.

* E-mail: mhtml:%7B33B38F65-8D2E-434D-8F9B-8BDCD77D3066%7Dmid://00000110/!x-usc:mailto:emmanuel.comoy@cea.fr



http://www.plosone.org/article/info:doi/10.1371/journal.pone.0003017




Saturday, December 01, 2007

Phenotypic Similarity of Transmissible Mink Encephalopathy in Cattle and L-type Bovine Spongiform Encephalopathy in a Mouse Model

Volume 13, Number 12–December 2007 Research

Phenotypic Similarity of Transmissible Mink Encephalopathy in Cattle and L-type Bovine Spongiform Encephalopathy in a Mouse Model

Thierry Baron,* Anna Bencsik,* Anne-Gaëlle Biacabe,* Eric Morignat,* andRichard A. Bessen†*Agence Française de Sécurité Sanitaire des Aliments–Lyon, Lyon, France; and†Montana State University, Bozeman, Montana, USA

Abstract

Transmissible mink encepholapathy (TME) is a foodborne transmissible spongiform encephalopathy (TSE) of ranch-raised mink; infection with a ruminant TSE has been proposed as the cause, but the precise origin of TME is unknown. To compare the phenotypes of each TSE, bovine-passaged TME isolate and 3 distinct natural bovine spongiform encephalopathy (BSE) agents (typical BSE, H-type BSE, and L-type BSE) were inoculated into an ovine transgenic mouse line (TgOvPrP4). Transgenic mice were susceptible to infection with bovine-passaged TME, typical BSE, and L-type BSE but not to H-type BSE. Based on survival periods, brain lesions profiles, disease-associated prion protein brain distribution, and biochemical properties of protease-resistant prion protein, typical BSE had a distint phenotype in ovine transgenic mice compared to L-type BSE and bovine TME.The similar phenotypic properties of L-type BSE and bovine TME in TgOvPrP4 mice suggest that L-type BSE is a much more likely candidate for the origin of TME than is typical BSE.

snip...

Conclusion

These studies provide experimental evidence that the Stetsonville TME agent is distinct from typical BSE but has phenotypic similarities to L-type BSE in TgOvPrP4 mice. Our conclusion is that L-type BSE is a more likely candidate for a bovine source of TME infection than typical BSE. In the scenario that a ruminant TSE is the source for TME infection in mink, this would be a second example of transmission of a TSE from ruminants to non-ruminants under natural conditions or farming practices in addition to transmission of typical BSE to humans, domestic cats, and exotic zoo animals(37). The potential importance of this finding is relevant to L-type BSE, which based on experimental transmission into humanized PrP transgenic mice and macaques, suggests that L-type BSE is more pathogenic for humans than typical BSE (24,38).



http://www.cdc.gov/eid/content/13/12/1887.htm?s_cid=eid1887_e




Transmissible Mink Encephalopathy TME

Subject: In Confidence - Perceptions of unconventional slow virus diseasesof animals in the USA - APRIL-MAY 1989 - G A H Wells




http://transmissible-mink-encephalopathy.blogspot.com/2007/12/phenotypic-similarity-of-transmissible.html




Dr. Thornsberry: Let's hypothesize that I had some cattle on the eastern slope and they were in the same pasture with elk with CWD. If a cow had been exposed to the PRP Scrapie and it did develop disease four years later, would that look like BSE? Would there be a way to determine if it came from CWD?

Dr. Bartz: The IC studies in cattle indicate it does not look like BSE. The clinical signs of the IC/CWD cattle are more like downer cattle, and not aggressive. As far as finding the source of a bovine TSE, the gold standard is the lesion profile study where you take cattle tissue and inoculate it into mice with appropriate controls, wait until the mice come down, and do the lesion profiling.




http://transmissible-mink-encephalopathy.blogspot.com/



http://transmissible-mink-encephalopathy.blogspot.com/2006_12_01_archive.html




3.57 The experiment which might have determined whether BSE and scrapie were caused by the same agent (ie, the feeding of natural scrapie to cattle) was never undertaken in the UK. It was, however, performed in the USA in 1979, when it was shown that cattle inoculated with the scrapie agent endemic in the flock of Suffolk sheep at the United States Department of Agriculture in Mission, Texas, developed a TSE quite unlike BSE.339 The findings of the initial transmission, though not of the clinical or neurohistological examination, were communicated in October 1988 to Dr Watson, Director of the CVL, following a visit by Dr Wrathall, one of the project leaders in the Pathology Department of the CVL, to the United States Department of Agriculture.340 The results were not published at this point, since the attempted transmission to mice from the experimental cow brain had been inconclusive. The results of the clinical and histological differences between scrapie-affected sheep and cattle were published in 1995. Similar studies in which cattle were inoculated intracerebrally with scrapie inocula derived from a number of scrapie-affected sheep of different breeds and from different States, were carried out at the US National Animal Disease Centre.341 The results, published in 1994, showed that this source of scrapie agent, though pathogenic for cattle,

*** did not produce the same clinical signs of brain lesions characteristic of BSE. ***

3.58 There are several possible reasons why the experiment was not performed in the UK. It had been recommended by Sir Richard Southwood (Chairman of the Working Party on Bovine Spongiform Encephalopathy) in his letter to the Permanent Secretary of MAFF, Mr (now Sir) Derek Andrews, on 21 June 1988,342 though it was not specifically recommended in the Working Party Report or indeed in the Tyrrell Committee Report (details of the Southwood Working Party and the Tyrell Committee can be found in vol. 4: The Southwood Working Party, 1988–89 and vol. 11: Scientists after Southwood respectively). The direct inoculation of scrapie into calves was given low priority, because of its high cost and because it was known that it had already taken place in the USA.343 It was also felt that the results of such an experiment would be hard to interpret. While a negative result 337 Fraser, H., Bruce, M., Chree, A., McConnell, I. and Wells, G. (1992) Transmission of Bovine Spongiform Encephalopathy and Scrapie to Mice, Journal of General Virology, 73, 1891–7; Bruce, M., Chree, A., McConnell, I., Foster, J., Pearson, G. and Fraser, H. (1994) Transmission of Bovine Spongiform Encephalopathy and Scrapie to Mice: Strain Variation and the Species Barrier, Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 343, 405–11 338 Bruce, M., Will, R., Ironside, J., McConell, I., Drummond, D., Suttie, A., McCordie, L., Chree, A., Hope, J., Birkett, C., Cousens, S., Fraser, H. and Bostock, C. (1997) Transmissions to Mice Indicate that ‘New Variant’ CJD is Caused by the BSE Agent, Nature, 389, 498–501 339 Clark, W., Hourrigan, J. and Hadlow, W. (1995) Encephalopathy in Cattle Experimentally Infected with the Scrapie Agent, American Journal of Veterinary Research, 56, 606–12 340 YB88/10.00/1.1 341 Cutlip, R., Miller, J., Race, R., Jenny, A., Katz, J., Lehmkuhl, H., Debey, B. and Robinson, M. (1994) Intracerebral Transmission of Scrapie to Cattle, Journal of Infectious Diseases, 169, 814–20 342 YB88/6.21/1.2 343 YB88/11.17/2.4 SCIENCE 84 would be informative, a positive result would need to demonstrate that when scrapie was transmitted to cattle, the disease which developed in cattle was the same as BSE.344 Given the large number of strains of scrapie and the possibility that BSE was one of them, it would be necessary to transmit every scrapie strain to cattle separately, to test the hypothesis properly. Such an experiment would be expensive. Secondly, as measures to control the epidemic took hold, the need for the experiment from the policy viewpoint was not considered so urgent. It was felt that the results would be mainly of academic interest.345 3.59 Nevertheless, from the first demonstration of transmissibility of BSE in 1988, the possibility of differences in the transmission properties of BSE and scrapie was clear. Scrapie was transmissible to hamsters, but by 1988 attempts to transmit BSE to hamsters had failed. Subsequent findings increased that possibility.



http://www.bseinquiry.gov.uk/pdf/volume2/chapter3.pdf




Monday, May 11, 2009

Rare BSE mutation raises concerns over risks to public health



http://bse-atypical.blogspot.com/2009/05/rare-bse-mutation-raises-concerns-over.html




Sunday, April 12, 2009 BSE MAD COW TESTING USA 2009 FIGURES Month Number of Tests

Feb 2009 -- 1,891

Jan 2009 -- 4,620



http://www.aphis.usda.gov/newsroom/hot_issues/bse/surveillance/ongoing_surv_results.shtml



SEE FULL TEXT ;



http://madcowtesting.blogspot.com/2009/04/bse-mad-cow-testing-usa-2009-figures.html




Monday, May 4, 2009

Back to the Past With New TSE Testing Agricultural Research/May-June 2009



http://madcowtesting.blogspot.com/2009/05/back-to-past-with-new-tse-testing.html




Sunday, May 10, 2009

Identification and characterization of bovine spongiform encephalopathy cases diagnosed and NOT diagnosed in the United States



http://bse-atypical.blogspot.com/2009/05/identification-and-characterization-of.html



Saturday, February 28, 2009NEW RESULTS ON IDIOPATHIC BRAINSTEM NEURONAL CHROMATOLYSIS TYPE BSE

"All of the 15 cattle tested showed that the brains had abnormally accumulated PrP" 2009
SEAC 102/2


http://bse-atypical.blogspot.com/2009/02/new-results-on-idiopathic-brainstem.html



Wednesday, October 08, 2008

Idiopathic Brainstem Neuronal Chromatolysis (IBNC): a novel prion protein related disorder of cattle?



http://bse-atypical.blogspot.com/2008/10/idiopathic-brainstem-neuronal.html




''THE LINE TO TAKE'' ON IBNC $$$ 1995 $$$

1995

page 9 of 14 ;30. The Committee noted that the results were unusual. the questioned whether there could be coincidental BSE infection or contamination with scrapie. Dr. Tyrell noted that the feeling of the committee was that this did not represent a new agent but it was important to be prepared to say something publicly about these findings. A suggested line to take was that these were scientifically unpublishable results but in line with the policy of openness they would be made publicly available and further work done to test their validity. Since the BSE precautions were applied to IBNC cases, human health was protected. Further investigations should be carried out on isolations from brains of IBNC cases with removal of the brain and subsequent handling under strict conditions to avoid the risk of any contamination.31. Mr. Bradley informed the Committee that the CVO had informed the CMO about the IBNC results and the transmission from retina and he, like the Committee was satisfied that the controls already in place or proposed were adequate. ...

snip... see full text


http://www.bseinquiry.gov.uk/files/yb/1995/06/21005001.pdf



Wednesday, August 20, 2008

Bovine Spongiform Encephalopathy Mad Cow Disease typical and atypical strains, was there a cover-up ?

August 20, 2008


snip...


another question, just how long have these atypical BSE TSEs been around in the bovine ???let's look at another case of atypical BSE in Germany way back in 1992 ;Subject: atypical BSE reported in 1992 and conviently slaughterd and incinerated and then swept under rug for about 12 years Date: April 26, 2007 at 1:08 pm PST 1992NEW BRAIN DISORDER3. WHAT ABOUT REPORTS OF NEW FORM OF BSE?THE VETERINARY RECORD HAS PUBLISHED AN ARTICLE ON A NEW BRAIN DISORDER OF CATTLE DISCOVERED THROUGH OUR CONTROL MEASURES FOR BSE. ALTHOUGH IT PRESENTS SIMILAR CLINICAL SIGNS TO BSE THERE ARE MAJOR DIFFERENCES IN THE HISTOPATHOLOGY AND INCUBATION PERIODS BETWEEN THE TWO. MUST EMPHASISE THAT THIS IS NOT BSE.4. IS THIS NEW BRAIN DISORDER A THREAT?WE DO NOT EVEN KNOW WHETHER THE AGENT OF THIS DISEASE IS TRANSMISSIBLE. IN ANY CASE, CASES SO FAR IDENTIFIED HAD SHOWN SIMILAR SYMPTOMS TO THOSE OF BSE, AND THEREFORE HAVE BEEN SLAUGHTERED AND INCINERATED, SO THAT IF A TRANSMISSIBLE AGENT WERE INVOLVED IT WOULD HAVE BEEN ELIMINATED. .......



http://www.bseinquiry.gov.uk/files/yb/1992/10/26001001.pdf




2. The Collinge/Will dispute appears to rumble on. Dr. Collinge had told Dr. Tyrrell that Dr. Will's response to his criticism about sharing material had been ''quite unacceptable'' (in spite of it's apparently conciliatory tone). Apparently Professor Allen was now going to try and arrange a meeting to resolve the dispute. No action here for MAFF, although Mr. Murray may be interested.3. Dr. Tyrrell regretted that the Committee had not seen the article on BBD. However he felt that for the time being NO specific action was called for. The most important need was to consider the possibility that the condition might be transmissible. As we have discussed, I suggested that we might circulate a paper to the members of the committee giving our appreciation of this condition (and perhaps of other non-BSE neurological conditions that had been identified in negative cases) and of any necessary follow up action. IF any Committee member felt strongly about this, or if the issue CAME TO A HEAD, we would call an interim meeting. He was happy with this approach. I would be grateful if Mr. Maslin could, in discussion with CVL and veterinary colleagues draft such a note, which will presumably very largely follow what Mr. Bradley's briefing paper has already said, taking account of DOH comments, We can then clear a final version with DOH before circulating it to Committee members.




http://www.bseinquiry.gov.uk/files/yb/1992/10/29005001.pdf




IN CONFIDENCE

This is a highly competitive field and it really will be a pity if we allow many of the key findings to be published by overseas groups while we are unable to pursue our research findings because of this disagreement, which I hope we can make every effort to solve.




http://www.bseinquiry.gov.uk/files/yb/1992/10/26002001.pdf




COLLINGE THREATENS TO GO TO MEDIA




http://www.bseinquiry.gov.uk/files/yb/1992/12/16005001.pdf




2. The discovery might indicate the existence of a different strain of BSE from that present in the general epidemic or an unusual response by an individual host.3. If further atypical lesion distribution cases are revealed in this herd then implications of misdiagnosis of 'negative' cases in other herds may not be insignificant.snip...This minute is re-issued with a wider distribution. The information contained herein should NOT be disseminated further except on the basis of ''NEED TO KNOW''.

R Bradley


http://www.bseinquiry.gov.uk/files/yb/1993/02/17001001.pdf



IN CONFIDENCE

BSE ATYPICAL LESION DISTRIBUTION


http://www.bseinquiry.gov.uk/files/yb/1993/03/14001001.pdf



ALABAMA MAD COW CASE



snip...


see full text ;



http://bse-atypical.blogspot.com/2008/08/bovine-spongiform-encephalopathy-mad.html



Friday, May 29, 2009

Characterization of a U.S. Sheep Scrapie Isolate with Short Incubation Time


http://scrapie-usa.blogspot.com/2009/05/characterization-of-us-sheep-scrapie.html


Friday, May 29, 2009

Seven Deer Test Positive for Chronic Wasting Disease During 2009 Spring Collections in Hampshire County, West Virginia



http://chronic-wasting-disease.blogspot.com/2009/05/seven-deer-test-positive-for-chronic.html



O.K. confusious asks, IF all these new atypical BSEs i.e. new strains of mad cow disease is just an 'OLD COW PRION DISEASE', why then can not the 'old human prion disease' such as the sporadic CJD, be from an 'old cow prion disease', same as the nvCJD 'young people mad cow disease' (which also happens in 74 year old), but why cannot the 'old cow prion diseases', i.e. l-BSE, h-BSE, and ibncBSE, cause the 'old people prion disease', which looks like sporadic CJD. seems that is what some of the pathology is showing ???

OH, that probably makes too much sense, and that the only answer could be that it's all just a happenstance of bad luck and or a spontaneous event, that just happens out of the clear blue sky $$$

IF this is the case, then where are all the SPONTANEOUS BSE CASES OF MAD COW DISEASE IN THE U.S.A., AND WHERE HAVE THEY BEEN BURIED IN THE USA OVER THE LAST 25 YEARS ???


Thursday, April 30, 2009

FDA Issues Final Guidance for Renderers on Substances Prohibited From Use in Animal Food or Feed CVM Update Back April 30, 2009



http://madcowfeed.blogspot.com/2009/04/fda-issues-final-guidance-for-renderers.html




Sunday, December 28, 2008

MAD COW DISEASE USA DECEMBER 28, 2008 an 8 year review of a failed and flawed policy



http://bse-atypical.blogspot.com/2008/12/mad-cow-disease-usa-december-28-2008-8.html




Wednesday, August 20, 2008

Bovine Spongiform Encephalopathy Mad Cow Disease typical and atypical strains, was there a cover-up ?



http://bse-atypical.blogspot.com/2008/08/bovine-spongiform-encephalopathy-mad.html





Monday, June 01, 2009

Biochemical typing of pathological prion protein in aging cattle with BSE



http://bse-atypical.blogspot.com/2009/06/biochemical-typing-of-pathological.html




SPORADIC CJD CASES RISING IN U.S.A


Monday, April 20, 2009 National Prion Disease Pathology Surveillance Center Cases Examined1 (December 31, 2008)

April 20, 2009

National Prion Disease Pathology Surveillance Center Cases Examined1 (December 31, 2008)

National Prion Disease Pathology Surveillance Center Cases Examined1

(December 31, 2008)

Year Total Referrals2 Prion Disease Sporadic Familial Iatrogenic vCJD

1996 & earlier 42 32 28 4 0 0

1997 115 68 59 9 0 0

1998 93 53 45 7 1 0

1999 115 69 61 8 0 0

2000 151 103 89 14 0 0

2001 210 118 108 9 0 0

2002 258 147 123 22 2 0

2003 273 176 135 41 0 0

2004 335 184 162 21 0 13

2005 346 193 154 38 1 0

2006 380 192 159 32 0 14

2007 370 212 185 26 0 0

2008 383 228 182 23 0 0

TOTAL 30715 17756 1490 254 4 2

1 Listed based on the year of death or, if not available, on year of referral; 2 Cases with suspected prion disease for which brain tissue and/or blood (in familial cases) were submitted; 3 Disease acquired in the United Kingdom; 4 Disease acquired in Saudi Arabia; 5 Includes 20 cases in which the diagnosis is pending, and 17 inconclusive cases; 6 Includes 25 cases with type determination pending in which the diagnosis of vCJD has been excluded.

Rev 2/13/09 National



http://www.cjdsurveillance.com/pdf/case-table.pdf



http://www.cjdsurveillance.com/resources-casereport.html



http://www.aan.com/news/?event=read&article_id=4397&page=72.45.45



*5 Includes 20 cases in which the diagnosis is pending, and 17 inconclusive cases; *6 Includes 25 cases with type determination pending in which the diagnosis of vCJD has been excluded.


Greetings,


it would be interesting to know what year these atypical cases occurred, as opposed to lumping them in with the totals only.

are they accumulating ?

did they occur in one year, two years, same state, same city ?

location would be very interesting ?

age group ?

sex ?

how was it determined that nvCJD was ruled out ?

from 1997, the year i started dealing with this nightmare, there were 28 cases (per this report), up until 2007 where the total was 185 cases (per this report), and to date 2008 is at 182. a staggering increase in my opinion, for something that just happens spontaneously as some would have us believe. i don't believe it, not in 85%+ of all sporadic CJD cases. actually, i do not believe yet that anyone has proven that any of the sporadic CJD cases have been proven to be a spontaneous misfolding of a protein. there are many potential routes and sources for the sporadic CJD's. ...TSS

please see full text here ;



http://prionunitusaupdate2008.blogspot.com/2009/04/national-prion-disease-pathology.html




Monday, June 01, 2009

Biochemical typing of pathological prion protein in aging cattle with BSE


http://bse-atypical.blogspot.com/2009/06/biochemical-typing-of-pathological.html



Friday, May 29, 2009

Characterization of a U.S. Sheep Scrapie Isolate with Short Incubation Time


http://scrapie-usa.blogspot.com/2009/05/characterization-of-us-sheep-scrapie.html




Friday, May 29, 2009

Seven Deer Test Positive for Chronic Wasting Disease During 2009 Spring Collections in Hampshire County, West Virginia



http://chronic-wasting-disease.blogspot.com/2009/05/seven-deer-test-positive-for-chronic.html




Terry S. Singeltary Sr.
P.O. Box 42
Bacliff, Texas USA 77518

Labels: , , , , , , , ,

Monday, June 01, 2009

Biochemical typing of pathological prion protein in aging cattle with BSE

Biochemical typing of pathological prion protein in aging cattle with BSE

Virology Journal 2009, 6:64 doi:10.1186/1743-422X-6-64 Seraina Tester (mhtml:%7B33B38F65-8D2E-434D-8F9B-8BDCD77D3066%7Dmid://00000056/!x-usc:mailto:seraina.tester@itn.unibe.ch) Valerie Juillerat (mhtml:%7B33B38F65-8D2E-434D-8F9B-8BDCD77D3066%7Dmid://00000056/!x-usc:mailto:valerie.juillerat@itn.unibe.ch) Marcus G Doherr (mhtml:%7B33B38F65-8D2E-434D-8F9B-8BDCD77D3066%7Dmid://00000056/!x-usc:mailto:marcus.doherr@itn.unibe.ch) Bianca Haase (mhtml:%7B33B38F65-8D2E-434D-8F9B-8BDCD77D3066%7Dmid://00000056/!x-usc:mailto:bianca.haase@itz.unibe.ch) Miroslaw Polak (mhtml:%7B33B38F65-8D2E-434D-8F9B-8BDCD77D3066%7Dmid://00000056/!x-usc:mailto:ppolak@piwet.pulawy.pl) Felix Ehrensperger (mhtml:%7B33B38F65-8D2E-434D-8F9B-8BDCD77D3066%7Dmid://00000056/!x-usc:mailto:f.ehrensperger@vetpath.uzh.ch) Tosso Leeb (mhtml:%7B33B38F65-8D2E-434D-8F9B-8BDCD77D3066%7Dmid://00000056/!x-usc:mailto:tosso.leeb@itz.unibe.ch) Andreas Zurbriggen (mhtml:%7B33B38F65-8D2E-434D-8F9B-8BDCD77D3066%7Dmid://00000056/!x-usc:mailto:andreas.zurbriggen@itn.unibe.ch) Torsten Seuberlich (mhtml:%7B33B38F65-8D2E-434D-8F9B-8BDCD77D3066%7Dmid://00000056/!x-usc:mailto:torsten.seuberlich@itn.unibe.ch) ISSN 1743-422X Article type Research Submission date 23 March 2009 Acceptance date 26 May 2009 Publication date 26 May 2009 Article URL http://www.virologyj.com/content/6/1/64 This peer-reviewed article was published immediately upon acceptance. It can be downloaded, printed and distributed freely for any purposes (see copyright notice below). Articles in Virology Journal are listed in PubMed and archived at PubMed Central. For information about publishing your research in Virology Journal or any BioMed Central journal, go to http://www.virologyj.com/info/instructions/ For information about other BioMed Central publications go to http://www.biomedcentral.com/ Virology Journal © 2009 Tester et al. , licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 1

Biochemical typing of pathological prion protein in aging cattle with BSE

Seraina Tester1, Valerie Juillerat1, Marcus G. Doherr1, Bianca Haase2, Miroslaw Polak3, Felix Ehrensperger4, Tosso Leeb2, Andreas Zurbriggen1 and Torsten Seuberlich1* 1 NeuroCenter, Reference Laboratory for TSE in animals, Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Berne, Switzerland 2 Institute of Genetics, Vetsuisse Faculty, University of Berne, Switzerland 3 National Veterinary Research Institute, Pulawy, Poland 4 Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, Switzerland ST: mhtml:%7B33B38F65-8D2E-434D-8F9B-8BDCD77D3066%7Dmid://00000056/!x-usc:mailto:seraina.tester@itn.unibe.ch VJ: mhtml:%7B33B38F65-8D2E-434D-8F9B-8BDCD77D3066%7Dmid://00000056/!x-usc:mailto:vallerie.juillerat@itn.unibe.ch MGD: mhtml:%7B33B38F65-8D2E-434D-8F9B-8BDCD77D3066%7Dmid://00000056/!x-usc:mailto:marcus.doherr@itn.unibe.ch BH: mhtml:%7B33B38F65-8D2E-434D-8F9B-8BDCD77D3066%7Dmid://00000056/!x-usc:mailto:bianca.haase@itz.unibe.ch MP: mhtml:%7B33B38F65-8D2E-434D-8F9B-8BDCD77D3066%7Dmid://00000056/!x-usc:mailto:ppolak@piwet.pulawy.pl FE: mhtml:%7B33B38F65-8D2E-434D-8F9B-8BDCD77D3066%7Dmid://00000056/!x-usc:mailto:f.ehrensperger@vetpath.uzh.ch TL: mhtml:%7B33B38F65-8D2E-434D-8F9B-8BDCD77D3066%7Dmid://00000056/!x-usc:mailto:tosso.leeb@itz.unibe.ch AZ: mhtml:%7B33B38F65-8D2E-434D-8F9B-8BDCD77D3066%7Dmid://00000056/!x-usc:mailto:andreas.zurbriggen@itn.unibe.ch *Corresponding author: Dr. med. vet. Torsten Seuberlich NeuroCenter - Reference Laboratory for TSE in animals Department of Clinical Research and VPH Vetsuisse Faculty University of Berne Bremgartenstrasse 109a CH- 3001 Berne Switzerland Email: mhtml:%7B33B38F65-8D2E-434D-8F9B-8BDCD77D3066%7Dmid://00000056/!x-usc:mailto:torsten.seuberlich@itn.unibe.ch Phone: +41 31 631 2206 Fax: +41 31 631 2538 2

Abstract:

Background

The broad enforcement of active surveillance for bovine spongiform encephalopathy (BSE) in 2000 led to the discovery of previously unnoticed, atypical BSE phenotypes in aged cattle that differed from classical BSE (C-type) in biochemical properties of the pathological prion protein. Depending on the molecular mass and the degree of glycosylation of its proteinase K resistant core fragment (PrPres), mainly determined in samples derived from the medulla oblongata, these atypical cases are currently classified into low (L)-type or high (H)-type BSE. In the present study we address the question to what extent such atypical BSE cases are part of the BSE epidemic in Switzerland.

Results

To this end we analyzed the biochemical PrPres type by Western blot in a total of 33 BSE cases in cattle with a minimum age of eight years, targeting up to ten different brain regions. Our work confirmed H-type BSE in a zebu but classified all other cases as C-type BSE; indicating a very low incidence of H- and L-type BSE in Switzerland. It was documented for the first time that the biochemical PrPres type was consistent across different brain regions of aging animals with C-type and H-type BSE, i.e. independent of the neuroanatomical structure investigated.

Conclusions

Taken together this study provides further characteristics of the BSE epidemic in Switzerland and generates new baseline data for the definition of C- and H-type BSE phenotypes, thereby underpinning the notion that they indeed represent distinct prion disease entities.

snip...

Conclusions

Taken together these results indicate that the prevalence of H- and L-type BSE in Switzerland remains under the detection limit of the Swiss active surveillance program. However one H-type BSE case was identified by passive BSE surveillance and proves in principle the capacity to identify such cases in the population. Hence, the overall prevalence of atypical BSE in Switzerland appears very low and similar to what has been reported from other countries. It has been speculated and strengthened by experimental data [53,54] that atypical BSE once recycled in the cattle population was the origin of the worldwide BSE epidemic in the last 20 years. If this holds true and such cases occur spontaneously in the population, then BSE might never be completely eradicated. Furthermore, in these circumstances, it would be hazardous to relieve certain disease control measures, including the total prohibition of MBM in ruminant feed.



http://www.virologyj.com/content/pdf/1743-422X-6-64.pdf





Greetings,


O.K., let me get this straight, we have typical, U.K. c-BSE, we have now a spontaneous atypical h-BSE and l-BSE, of which they are now just calling an 'old cow disease', which happens spontaneously without any route or source, just happens.

OH, and then we have the new/old ibncBSE, of which is just another 'old cow prion disease', another one of those spontaneous events $$$

IT SEEMS there is a pattern here to make all Transmissible Spongiform Encephalopathies a spontaneous event, even though there is no such evidence what so ever.

WITH all the sub-types of TSE showing up now in the Scrapie, BSE, CWD, (all of which has been rendered and fed back to livestock producing animals for human and animal feed), and even in humans i.e. CJD, there is no way, they know for a fact that all are of a spontaneous, sporadic event, that just happened due to a twisted up protein that folded the wrong way by itself, from no route and no source. they do NOT know if any of these atypical TSE are of a spontaneous old cows prion disease or not, but yet they preach it like it's the gospel $$$

I don't believe them today, and i will never believe that 85%+ of all human sporadic CJD, just happens without any route and source from anything. ...


kind regards, terry



Absence of spontaneous disease and comparative prion susceptibility of transgenic mice expressing mutant human prion proteins

Emmanuel A. Asante, Ian Gowland, Andrew Grimshaw, Jacqueline M. Linehan, Michelle Smidak, Richard Houghton, Olufunmilayo Osiguwa, Andrew Tomlinson, Susan Joiner, Sebastian Brandner, Jonathan D. F. Wadsworth and John Collinge Correspondence John Collinge mhtml:%7B33B38F65-8D2E-434D-8F9B-8BDCD77D3066%7Dmid://00000056/!x-usc:mailto:j.collinge@prion.ucl.ac.uk MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK Received 15 October 2008 Accepted 2 December 2008

Approximately 15% of human prion disease is associated with autosomal-dominant pathogenic mutations in the prion protein (PrP) gene. Previous attempts to model these diseases in mice have expressed human PrP mutations in murine PrP, but this may have different structural consequences. Here, we describe transgenic mice expressing human PrP with P102L or E200K mutations and methionine (M) at the polymorphic residue 129. Although no spontaneous disease developed in aged animals, these mice were readily susceptible to prion infection from patients with the homotypic pathogenic mutation. However, while variant Creutzfeldt-Jakob disease (CJD) prions transmitted infection efficiently to both lines of mice, markedly different susceptibilities to classical (sporadic and iatrogenic) CJD prions were observed. Prions from E200K and classical CJD M129 homozygous patients, transmitted disease with equivalent efficiencies and short incubation periods in human PrP 200K, 129M transgenic mice. However, mismatch at residue 129 between inoculum and host dramatically increased the incubation period. In human PrP 102L, 129M transgenic mice, short disease incubation periods were only observed with transmissions of prions from P102L patients, whereas classical CJD prions showed prolonged and variable incubation periods irrespective of the codon 129 genotype. Analysis of diseaserelated PrP (PrPSc) showed marked alteration in the PrPSc glycoform ratio propagated after transmission of classical CJD prions, consistent with the PrP point mutations directly influencing PrPSc assembly. These data indicate that P102L or E200K mutations of human PrP have differing effects on prion propagation that depend upon prion strain type and can be significantly influenced by mismatch at the polymorphic residue 129.

snip...

Transgenic mice expressing high levels of mouse PrP 101L (equivalent to 102L in human PrP) spontaneously developed neurological dysfunction at 166 days of age (Hsiao et al., 1990). PrPSc levels were low or undetectable, and brain extracts from affected mice did not transmit CNS degeneration to wild-type mice, but transmission to hamsters and Tg(GSSPrP)196 mice, expressing lower levels of the same mutant transgene product, was reported (Hsiao et al., 1994; Telling et al., 1996a). These Tg(GSSPrP)196 mice have subsequently been reported to develop spontaneous disease at advanced age (Tremblay et al., 2004; Nazor et al., 2005). It therefore remains debateable as to whether prions had been generated in these transgenic mice or this simply represents acceleration of a spontaneous neurodegenerative disease already poised to occur in these mice (Nazor et al., 2005). Others generated transgenic mice expressing endogenous levels of mouse PrP 101L by the gene knock-in approach (Manson et al., 1999). These mice did not develop spontaneous neurodegeneration but were reported to show greater susceptibility to human P102L prions than wildtype mice (Barron et al., 2001).

However, we consider it essential to study this and other human pathogenic mutations in human PrP, rather than in mouse PrP where the mutation may have different structural consequences. With respect to such models it is important to demonstrate that human PrP is functionally active and can participate in prion propagation and pathogenesis in mouse cells. Human PrP can rescue a PrP null phenotype in mice (Whittington et al., 1995), confirming it is functionally active and human prions can replicate in transgenic mice expressing only human PrP, which develop spongiform neurodegeneration (Collinge et al., 1995).

snip...see full text ;



http://vir.sgmjournals.org/cgi/reprint/90/3/546



****** [2] Correction Date: Tue 5 Sep 2006 From: "Terry S Singeltary Sr" <mhtml:%7B33B38F65-8D2E-434D-8F9B-8BDCD77D3066%7Dmid://00000056/!x-usc:mailto:flounder9@verizon.net>

Characterization of atypical BSE in Germany:


correction -------------------------------------------------------


[In the Moderator's comment accompanying the abstract of the paper entitled "Atypical BSE in Germany-Proof of transmissibility and biochemical characterization'" by A Buschmannaet et al, (see part [2] of CJD (new var.) update 2006 (09) 20060904.2519) it was wrongly implied that Terry S Singeltary Sr endorsed the conclusions of the paper, whereas his comments were intended merely to highlight the conclusions of the paper. Namely that the atypical cases suggested the possible existence of sporadic BSE cases in bovines and perhaps the BSE epidemic in the UK could have also been initiated by an intraspecies transmission from a sporadic BSE case. I apologize for inadvertently misrepresenting Terry's views. - Mod.CP]

Terry S Singeltary Sr has written the following. "In fact I disagree with the spontaneous/sporadic BSE/TSE theory, IF this is what the authors of this paper meant by 'sporadic BSE' to mean. For one thing, it has never been proven. IF atypical BSE i.e. BASE is so similar to some sporadic CJDs, then how did they all of a sudden become spontaneous? Could it not be so simple as an atypical BSE i.e. BASE was transmitted the same way most of all of the other BSE cattle were i.e. feed of just an atypical source, thus causing atypical strain? Why would these animals not develop an atypical BSE i.e. BASE from the same oral route? WHAT about an atypical strain mutating to become infectious via a lateral or horizontal mode in the bovine, as with CWD and scrapie? Also, please explain to me how a distinct synthetic prion, of a strain that is supposedly unlike any other we have ever seen, how can this explain 6 different documented phenotypes of sporadic CJD to date?

It's like trying to explain away all the 6 phenotypes of sporadic CJD with the spontaneous theory, it's just not scientific. OR, if you render an atypical TSE of what ever phenotype, in what ever species, of the atypical strain and feed it to another whatever species, nothing happens x 1 x 2 x 3 x 4 etc passage? This all has been proven?

Please show me these transmission studies? What Prusiner and Soto produced in vitro did not look like any natural field TSE, and as far as this in vitro TSE being infectious, well this was questionable too. If this was the case, then why does CWD not spontaneously happen in geographical areas where it has never been documented, OR with scrapie, as in scrapie free New Zealand? If TSE were to arise spontaneously, I don't see how the scientific arena can dictate which animal TSE can arise spontaneously, and which ones cannot, without any scientific evidence to support this to date, and by even suggesting this in this study, was not scientific. The words sporadic and spontaneous are very confusing in the world literature of human and animal TSE and, in my opinion, should not be used as terminology of any TSE."

-- Terry S Singeltary Sr <mhtml:%7B33B38F65-8D2E-434D-8F9B-8BDCD77D3066%7Dmid://00000056/!x-usc:mailto:flounder9@verizon.net>



http://apex.oracle.com/pls/otn/f?p=2400:1202:17822992441545446841::NO::F2400_P1202_CHECK_DISPLAY,F2400_P1202_PUB_MAIL_ID:X,34659




Saturday, February 28, 2009

NEW RESULTS ON IDIOPATHIC BRAINSTEM NEURONAL CHROMATOLYSIS "All of the 15 cattle tested showed that the brains had abnormally accumulated PrP" 2009 SEAC 102/2



http://bse-atypical.blogspot.com/2009/02/new-results-on-idiopathic-brainstem.html




Sunday, May 17, 2009

De Novo Generation of Infectious Prions In Vitro Produces a New Disease Phenotype



http://bse-atypical.blogspot.com/2009/05/de-novo-generation-of-infectious-prions.html




Monday, May 11, 2009

Rare BSE mutation raises concerns over risks to public health



http://bse-atypical.blogspot.com/2009/05/rare-bse-mutation-raises-concerns-over.html





Sunday, April 12, 2009


BSE MAD COW TESTING USA 2009 FIGURES Month Number of Tests


Feb 2009 -- 1,891

Jan 2009 -- 4,620



http://www.aphis.usda.gov/newsroom/hot_issues/bse/surveillance/ongoing_surv_results.shtml




SEE FULL TEXT ;



http://madcowtesting.blogspot.com/2009/04/bse-mad-cow-testing-usa-2009-figures.html




Monday, May 4, 2009

Back to the Past With New TSE Testing Agricultural Research/May-June 2009



http://madcowtesting.blogspot.com/2009/05/back-to-past-with-new-tse-testing.html




Sunday, May 10, 2009

Identification and characterization of bovine spongiform encephalopathy cases diagnosed and NOT diagnosed in the United States



http://bse-atypical.blogspot.com/2009/05/identification-and-characterization-of.html




Friday, May 29, 2009

Characterization of a U.S. Sheep Scrapie Isolate with Short Incubation Time




http://scrapie-usa.blogspot.com/2009/05/characterization-of-us-sheep-scrapie.html




Friday, May 29, 2009

Seven Deer Test Positive for Chronic Wasting Disease During 2009 Spring Collections in Hampshire County, West Virginia




http://chronic-wasting-disease.blogspot.com/2009/05/seven-deer-test-positive-for-chronic.html




O.K. confusious asks, IF all these new atypical BSEs i.e. new strains of mad cow disease is just an 'OLD COW PRION DISEASE', why then can not the 'old human prion disease' such as the sporadic CJD, be from an 'old cow prion disease', same as the nvCJD 'young people mad cow disease' (which also happens in 74 year old), but why cannot the 'old cow prion diseases', i.e. l-BSE, h-BSE, and ibncBSE, cause the 'old people prion disease', which looks like sporadic CJD. seems that is what some of the pathology is showing ???


OH, that probably makes too much sense, and that the only answer could be that it's all just a happenstance of bad luck and or a spontaneous event, that just happens out of the clear blue sky $$$


IF this is the case, then where are all the SPONTANEOUS BSE CASES OF MAD COW DISEASE IN THE U.S.A., AND WHERE HAVE THEY BEEN BURIED IN THE USA OVER THE LAST 25 YEARS ???


Atypical BSE North America Update February 2009



http://bse-atypical.blogspot.com/2009/02/atypical-bse-north-america-update.html




Sunday, December 28, 2008

MAD COW DISEASE USA DECEMBER 28, 2008 an 8 year review of a failed and flawed policy



http://bse-atypical.blogspot.com/2008/12/mad-cow-disease-usa-december-28-2008-8.html




Wednesday, August 20, 2008

Bovine Spongiform Encephalopathy Mad Cow Disease typical and atypical strains, was there a cover-up ?



http://bse-atypical.blogspot.com/2008/08/bovine-spongiform-encephalopathy-mad.html





Terry S. Singeltary Sr.
P.O. Box 42
Bacliff, Texas USA 77518

Labels: , , , ,