Thursday, October 07, 2010

Experimental Transmission of H-type Bovine Spongiform Encephalopathy to Bovinized Transgenic Mice

Experimental Transmission of H-type Bovine Spongiform Encephalopathy to Bovinized Transgenic Mice

Vet Pathol 0300985810382672, first published on October 4, 2010


Experimental Transmission of H-type Bovine Spongiform Encephalopathy to Bovinized Transgenic Mice

H. Okada okadahi@affrc.go.jp Prion Disease Research Center, National Institute of Animal Health, Tsukuba, K. Masujin Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Y. Imamaru Prion Disease Research Center, National Institute of Animal Health, Tsukuba, M. Imamura Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Y. Matsuura Prion Disease Research Center, National Institute of Animal Health, Tsukuba, S. Mohri Prion Disease Research Center, National Institute of Animal Health, Tsukuba, S. Czub Animal Disease Research Institute, Canadian Food Inspection Agency, T. Yokoyama Prion Disease Research Center, National Institute of Animal Health, Tsukuba,

Abstract

To characterize the biological and biochemical properties of H-type bovine spongiform encephalopathy (BSE), a transmission study with a Canadian H-type isolate was performed with bovinized transgenic mice (TgBoPrP), which were inoculated intracerebrally with brain homogenate from cattle with H-type BSE. All mice exhibited characteristic neurologic signs, and the subsequent passage showed a shortened incubation period. The distribution of disease-associated prion protein (PrPSc) was determined by immunohistochemistry, Western blot, and paraffin-embedded tissue (PET) blot. Biochemical properties and higher molecular weight of the glycoform pattern were well conserved within mice. Immunolabeled granular PrPSc, aggregates, and/or plaque-like deposits were mainly detected in the following brain locations: septal nuclei, subcallosal regions, hypothalamus, paraventricular nucleus of the thalamus, interstitial nucleus of the stria terminalis, and the reticular formation of the midbrain. Weak reactivity was detected by immunohistochemistry and PET blot in the cerebral cortex, most thalamic nuclei, the hippocampus, medulla oblongata, and cerebellum. These findings indicate that the H-type BSE prion has biological and biochemical properties distinct from those of C-type and L-type BSE in TgBoPrP mice, which suggests that TgBoPrP mice constitute a useful animal model to distinguish isolates from BSE-infected cattle.

© 2010 Sage Publications, Inc.



http://vet.sagepub.com/content/early/2010/10/02/0300985810382672.abstract




Greetings,


I have been most interested to see IF the h-BSE (h-BSE or g-h-BSEalabama???), but i have been most interested to see if in fact this atypical h-BSE is more virulent than c-BSE, as is the L-BSE (Italian strain) has been documented to be. We know from the studies of Kong et al that h-BSE will transmit to TG human mice;

BSE-H is also transmissible in our humanized Tg mice.

The possibility of more than two atypical BSE strains will be discussed.

Supported by NINDS NS052319, NIA AG14359, and NIH AI 77774.

http://www.prion2009.com/sites/default/files/Prion2009_Book_of_Abstracts.pdf


HOWEVER, as to the virulance of it one way or the other compared to c-BSE and or L-BSE, i don't think no one has said yet or not? interesting this debate of the h-BSE TEXAS (2nd mad cow finally confirmed 7 months after the fact, and an act of Congress), compared to the g-h-BSEalabama strain documented in Alabama, that is identicle to the new human CJD in the USA that is killing the young and old, with clinical long duration, and different symptoms in some cases too, but not related to this ??? ALSO, this IBNC BSE, might this be the g-h-BSEalabama strain?


layperson


Terry S. Singeltary Sr.
P.O. Box 42
Bacliff, Texas USA 77518
flounder9@verizon.net



Given the large number of strains of scrapie and the possibility that BSE was one of them, it would be necessary to transmit every scrapie strain to cattle separately, to test the hypothesis properly. Such an experiment would be expensive. Secondly, as measures to control the epidemic took hold, the need for the experiment from the policy viewpoint was not considered so urgent. It was felt that the results would be mainly of academic interest.345 3.59 Nevertheless, from the first demonstration of transmissibility of BSE in 1988, the possibility of differences in the transmission properties of BSE and scrapie was clear. Scrapie was transmissible to hamsters, but by 1988 attempts to transmit BSE to hamsters had failed. Subsequent findings increased that possibility.

http://collections.europarchive.org/tna/20080102110838/http://www.bseinquiry.gov.uk/pdf/volume2/chapter3.pdf



Sunday, April 18, 2010

SCRAPIE AND ATYPICAL SCRAPIE TRANSMISSION STUDIES A REVIEW 2010

http://scrapie-usa.blogspot.com/2010/04/scrapie-and-atypical-scrapie.html



Sunday, October 3, 2010

Scrapie, Nor-98 atypical Scrapie, and BSE in sheep and goats North America, who's looking ?

http://nor-98.blogspot.com/2010/10/scrapie-nor-98-atypical-scrapie-and-bse.html



let's take a closer look at this new prionpathy or prionopathy, and then let's look at the g-h-BSEalabama mad cow.

This new prionopathy in humans? the genetic makeup is IDENTICAL to the g-h-BSEalabama mad cow, the only _documented_ mad cow in the world to date like this, ......wait, it get's better. this new prionpathy is killing young and old humans, with LONG DURATION from onset of symptoms to death, and the symptoms are very similar to nvCJD victims, OH, and the plaques are very similar in some cases too, bbbut, it's not related to the g-h-BSEalabama cow, WAIT NOW, it gets even better, the new human prionpathy that they claim is a genetic TSE, has no relation to any gene mutation in that family. daaa, ya think it could be related to that mad cow with the same genetic make-up ??? there were literally tons and tons of banned mad cow protein in Alabama in commerce, and none of it transmitted to cows, and the cows to humans there from ??? r i g h t $$$

ALABAMA MAD COW g-h-BSEalabama

In this study, we identified a novel mutation in the bovine prion protein gene (Prnp), called E211K, of a confirmed BSE positive cow from Alabama, United States of America. This mutation is identical to the E200K pathogenic mutation found in humans with a genetic form of CJD. This finding represents the first report of a confirmed case of BSE with a potential pathogenic mutation within the bovine Prnp gene. We hypothesize that the bovine Prnp E211K mutation most likely has caused BSE in "the approximately 10-year-old cow" carrying the E221K mutation.

http://www.plospathogens.org/article/info%3Adoi%2F10.1371%2Fjournal.ppat.1000156



http://www.plospathogens.org/article/fetchObjectAttachment.action?uri=info%3Adoi%2F10.1371%2Fjournal.ppat.1000156&representation=PDF



Saturday, August 14, 2010

BSE Case Associated with Prion Protein Gene Mutation (g-h-BSEalabama) and VPSPr PRIONPATHY

(see mad cow feed in COMMERCE IN ALABAMA...TSS)

http://prionpathy.blogspot.com/2010/08/bse-case-associated-with-prion-protein.html



Tuesday, August 03, 2010

Variably protease-sensitive prionopathy: A new sporadic disease of the prion protein

http://creutzfeldt-jakob-disease.blogspot.com/2010/08/variably-protease-sensitive-prionopathy.html



Monday, August 9, 2010

Variably protease-sensitive prionopathy: A new sporadic disease of the prion protein or just more PRIONBALONEY ?

http://prionunitusaupdate2008.blogspot.com/2010/08/variably-protease-sensitive-prionopathy.html



***+++***

Thursday, July 10, 2008

A Novel Human Disease with Abnormal Prion Protein Sensitive to Protease update July 10, 2008 Friday, June 20, 2008

http://cjdmadcowbaseoct2007.blogspot.com/2008/07/novel-human-disease-with-abnormal-prion.html



CJD TEXAS 38 YEAR OLD FEMALE WORKED SLAUGHTERING CATTLE EXPOSED TO BRAIN AND SPINAL CORD MATTER





Irma Linda Andablo CJD Victim, she died at 38 years old on February 6, 2010 in Mesquite Texas

Irma Linda Andablo CJD Victim, she died at 38 years old on February 6, 2010 in Mesquite Texas.She left 6 Kids and a Husband.The Purpose of this web is to give information in Spanish to the Hispanic community, and to all the community who want's information about this terrible disease.-

Physician Discharge Summary, Parkland Hospital, Dallas Texas

Admit Date: 12/29/2009 Discharge Date: 1/20/2010 Attending Provider: Greenberg, Benjamin Morris; General Neurology Team: General Neurology Team

Linda was a Hispanic female with no past medical history presents with 14 months of incresing/progressive altered mental status, generalized weakness, inability to walk, loss of appetite, inability to speak, tremor and bowel/blader incontinence.She was, in her usual state of health up until February, 2009, when her husbans notes that she began forgetting things like names and short term memories. He also noticed mild/vague personality changes such as increased aggression. In March, she was involved in a hit and run MVA,although she was not injured. The police tracked her down and ticketed her. At that time, her son deployed to Iraq with the Army and her husband assumed her mentation changes were due to stress over these two events. Also in March, she began to have weakness in her legs, making it difficult to walk. Over the next few months, her mentation and personality changes worsened, getting to a point where she could no longer recognized her children. She was eating less and less. She was losing more weight. In the last 2-3 months, she reached the point where she could not walk without an assist, then 1 month ago, she stopped talking, only making grunting/aggressive sounds when anyone came near her. She also became both bowel and bladder incontinent, having to wear diapers. Her '"tremor'" and body jerks worsened and her hands assumed a sort of permanent grip position, leading her family to put tennis balls in her hands to protect her fingers.

The husband says that they have lived in Nebraska for the past 21 years. They had seen a doctor there during the summer time who prescribed her Seroquel and Lexapro, Thinking these were sx of a mood disorder. However, the medications did not help and she continued to deteriorate clinically. Up until about 6 years ago, the pt worked at Tyson foods where she worked on the assembly line, slaughtering cattle and preparing them for packaging. She was exposed to brain and spinal cord matter when she would euthanize the cattle. The husband says that he does not know any fellow workers with a similar illness. He also says that she did not have any preceeding illness or travel.


http://www.recordandoalinda.com/index.php?option=com_content&view=article&id=19:cjd-english-info&catid=9:cjd-ingles&Itemid=8




[Terry S. Singeltary Sr. has added the following comment:

"According to the World Health Organisation, the future public health threat of vCJD in the UK and Europe and potentially the rest of the world is of concern and currently unquantifiable. However, the possibility of a significant and geographically diverse vCJD epidemic occurring over the next few decades cannot be dismissed.

The key word here is diverse. What does diverse mean?

If USA scrapie transmitted to USA bovine does not produce pathology as the UK c-BSE, then why would CJD from there look like UK vCJD?"

SEE FULL TEXT ;


http://www.promedmail.org/pls/apex/f?p=2400:1001:568933508083034::NO::F2400_P1001_BACK_PAGE,F2400_P1001_PUB_MAIL_ID:1000,82101



.57 The experiment which might have determined whether BSE and scrapie were caused by the same agent (ie, the feeding of natural scrapie to cattle) was never undertaken in the UK. It was, however, performed in the USA in 1979, when it was shown that cattle inoculated with the scrapie agent endemic in the flock of Suffolk sheep at the United States Department of Agriculture in Mission, Texas, developed a TSE quite unlike BSE. 32 The findings of the initial transmission, though not of the clinical or neurohistological examination, were communicated in October 1988 to Dr Watson, Director of the CVL, following a visit by Dr Wrathall, one of the project leaders in the Pathology Department of the CVL, to the United States Department of Agriculture. 33 The results were not published at this point, since the attempted transmission to mice from the experimental cow brain had been inconclusive. The results of the clinical and histological differences between scrapie-affected sheep and cattle were published in 1995. Similar studies in which cattle were inoculated intracerebrally with scrapie inocula derived from a number of scrapie-affected sheep of different breeds and from different States, were carried out at the US National Animal Disease Centre. 34 The results, published in 1994, showed that this source of scrapie agent, though pathogenic for cattle, did not produce the same clinical signs of brain lesions characteristic of BSE.

32 Clark, W., Hourrigan, J. and Hadlow, W. (1995) Encephalopathy in Cattle Experimentally Infected with the Scrapie Agent, American Journal of Veterinary Research, 56, 606-12

33 YB88/10.00/1.1


http://web.archive.org/web/20040823105233/www.bseinquiry.gov.uk/files/yb/1988/10/00001001.pdf



Saturday, October 2, 2010

BSE surveillance front and centre: CFIA and USA

http://madcowtesting.blogspot.com/2010/10/bse-surveillance-front-and-centre-cfia.html



P.9.21

Molecular characterization of BSE in Canada

Jianmin Yang1, Sandor Dudas2, Catherine Graham2, Markus Czub3, Tim McAllister1, Stefanie Czub1 1Agriculture and Agri-Food Canada Research Centre, Canada; 2National and OIE BSE Reference Laboratory, Canada; 3University of Calgary, Canada

Background: Three BSE types (classical and two atypical) have been identified on the basis of molecular characteristics of the misfolded protein associated with the disease. To date, each of these three types have been detected in Canadian cattle.

Objectives: This study was conducted to further characterize the 16 Canadian BSE cases based on the biochemical properties of there associated PrPres. Methods: Immuno-reactivity, molecular weight, glycoform profiles and relative proteinase K sensitivity of the PrPres from each of the 16 confirmed Canadian BSE cases was determined using modified Western blot analysis.

Results: Fourteen of the 16 Canadian BSE cases were C type, 1 was H type and 1 was L type. The Canadian H and L-type BSE cases exhibited size shifts and changes in glycosylation similar to other atypical BSE cases. PK digestion under mild and stringent conditions revealed a reduced protease resistance of the atypical cases compared to the C-type cases. N terminal- specific antibodies bound to PrPres from H type but not from C or L type. The C-terminal-specific antibodies resulted in a shift in the glycoform profile and detected a fourth band in the Canadian H-type BSE.

Discussion: The C, L and H type BSE cases in Canada exhibit molecular characteristics similar to those described for classical and atypical BSE cases from Europe and Japan. This supports the theory that the importation of BSE contaminated feedstuff is the source of C-type BSE in Canada. It also suggests a similar cause or source for atypical BSE in these countries.

http://www.prion2009.com/sites/default/files/Prion2009_Book_of_Abstracts.pdf



Tuesday, September 14, 2010

Feed Safety and BSE/Ruminant Feed Ban Support Project (U18)

http://madcowfeed.blogspot.com/2010/09/feed-safety-and-bseruminant-feed-ban.html




THIS is why this question is so important to me, IS h-BSE more or less virulent than the c-BSE ?


Wednesday, July 28, 2010

re-Freedom of Information Act Project Number 3625-32000-086-05, Study of Atypical BSE UPDATE July 28, 2010


http://bse-atypical.blogspot.com/2010/07/re-freedom-of-information-act-project.html



Wednesday, August 11, 2010

REPORT ON THE INVESTIGATION OF THE SIXTEENTH CASE OF BOVINE SPONGIFORM ENCEPHALOPATHY (BSE) IN CANADA

http://bse-atypical.blogspot.com/2010/08/report-on-investigation-of-sixteenth.html



Thursday, August 19, 2010

REPORT ON THE INVESTIGATION OF THE SEVENTEENTH CASE OF BOVINE SPONGIFORM ENCEPHALOPATHY (BSE) IN CANADA

http://bseusa.blogspot.com/2010/08/report-on-investigation-of-seventeenth.html



Monday, August 30, 2010

Bovine Spongiform Encephalopathy (BSE) CANADA Import Policy for Bovine Animals and Their Products (TAHD-DSAT-IE-2005-9-2) Import Policy updates August

http://madcowtesting.blogspot.com/2010/08/bovine-spongiform-encephalopathy-bse.html



Thursday, August 19, 2010

SCRAPIE CANADA UPDATE Current as of 2010-07-31 The following table lists sheep flocks and/or goat herds confirmed to be infected with scrapie in Canada in 2010.

Current as of: 2010-07-31

http://nor-98.blogspot.com/2010/08/scrapie-canada-update-current-as-of.html



Atypical BSE in Cattle

BSE has been linked to the human disease variant Creutzfeldt Jakob Disease (vCJD). The known exposure pathways for humans contracting vCJD are through the consumption of beef and beef products contaminated by the BSE agent and through blood transfusions. However, recent scientific evidence suggests that the BSE agent may play a role in the development of other forms of human prion diseases as well. These studies suggest that classical type of BSE may cause type 2 sporadic CJD and that H-type atypical BSE is connected with a familial form of CJD.

To date the OIE/WAHO assumes that the human and animal health standards set out in the BSE chapter for classical BSE (C-Type) applies to all forms of BSE which include the H-type and L-type atypical forms. This assumption is scientifically not completely justified and accumulating evidence suggests that this may in fact not be the case. Molecular characterization and the spatial distribution pattern of histopathologic lesions and immunohistochemistry (IHC) signals are used to identify and characterize atypical BSE. Both the L-type and H-type atypical cases display significant differences in the conformation and spatial accumulation of the disease associated prion protein (PrPSc) in brains of afflicted cattle. Transmission studies in bovine transgenic and wild type mouse models support that the atypical BSE types might be unique strains because they have different incubation times and lesion profiles when compared to C-type BSE. When L-type BSE was inoculated into ovine transgenic mice and Syrian hamster the resulting molecular fingerprint had changed, either in the first or a subsequent passage, from L-type into C-type BSE. In addition, non-human primates are specifically susceptible for atypical BSE as demonstrated by an approximately 50% shortened incubation time for L-type BSE as compared to C-type. Considering the current scientific information available, it cannot be assumed that these different BSE types pose the same human health risks as C-type BSE or that these risks are mitigated by the same protective measures.

This study will contribute to a correct definition of specified risk material (SRM) in atypical BSE. The incumbent of this position will develop new and transfer existing, ultra-sensitive methods for the detection of atypical BSE in tissue of experimentally infected cattle.

Responsibilities include:

Driving research at the National and OIE BSE reference lab to ensure project milestones are met successfully. Contributing to the preparation of project progress reports. Directing technical staff working on the project. Communicating and discussing results, progress and future direction with project principle investigator(s). Communicating with collaborative project partners. Qualifications:

Successful completion of a PhD degree in an area focusing on or related to prion diseases. Extensive experience with molecular and/or morphologic techniques used in studying prion diseases and/or other protein misfolding disorders. Ability to think independently and contribute new ideas. Excellent written and oral communication skills. Ability to multitask, prioritize, and meet challenges in a timely manner. Proficiency with Microsoft Office, especially Word, PowerPoint and Excel. How to apply:

Please send your application and/or inquiry to: Dr. Stefanie Czub, DVM, Ph.D. Head, National and OIE BSE Reference Laboratory Canadian Food Inspection Agency Lethbridge Laboratory P.O. Box 640, Township Road 9-1 Lethbridge, AB, T1J 3Z4 Canada

phone: +1-403-382-5500 +1-403-382-5500 ext. 5549 email: stefanie.czub@inspection.gc.ca

Contact Info:

http://www.prionetcanada.ca/detail.aspx?menu=5&dt=293380&app=93&cat1=387&tp=20&lk=no&cat2



Wednesday, March 31, 2010

Atypical BSE in Cattle / position: Post Doctoral Fellow

http://bse-atypical.blogspot.com/2010/03/atypical-bse-in-cattle-position-post.html



14th International Congress on Infectious Diseases H-type and L-type Atypical BSE January 2010 (special pre-congress edition)

18.173 page 189

Experimental Challenge of Cattle with H-type and L-type Atypical BSE

A. Buschmann1, U. Ziegler1, M. Keller1, R. Rogers2, B. Hills3, M.H. Groschup1. 1Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany, 2Health Canada, Bureau of Microbial Hazards, Health Products & Food Branch, Ottawa, Canada, 3Health Canada, Transmissible Spongiform Encephalopathy Secretariat, Ottawa, Canada

Background: After the detection of two novel BSE forms designated H-type and L-type atypical BSE the question of the pathogenesis and the agent distribution of these two types in cattle was fully open. From initial studies of the brain pathology, it was already known that the anatomical distribution of L-type BSE differs from that of the classical type where the obex region in the brainstem always displays the highest PrPSc concentrations. In contrast in L-type BSE cases, the thalamus and frontal cortex regions showed the highest levels of the pathological prion protein, while the obex region was only weakly involved.

Methods:We performed intracranial inoculations of cattle (five and six per group) using 10%brainstemhomogenates of the two German H- and L-type atypical BSE isolates. The animals were inoculated under narcosis and then kept in a free-ranging stable under appropriate biosafety conditions.At least one animal per group was killed and sectioned in the preclinical stage and the remaining animals were kept until they developed clinical symptoms. The animals were examined for behavioural changes every four weeks throughout the experiment following a protocol that had been established during earlier BSE pathogenesis studies with classical BSE.

Results and Discussion: All animals of both groups developed clinical symptoms and had to be euthanized within 16 months. The clinical picture differed from that of classical BSE, as the earliest signs of illness were loss of body weight and depression. However, the animals later developed hind limb ataxia and hyperesthesia predominantly and the head. Analysis of brain samples from these animals confirmed the BSE infection and the atypical Western blot profile was maintained in all animals. Samples from these animals are now being examined in order to be able to describe the pathogenesis and agent distribution for these novel BSE types. Conclusions: A pilot study using a commercially avaialble BSE rapid test ELISA revealed an essential restriction of PrPSc to the central nervous system for both atypical BSE forms. A much more detailed analysis for PrPSc and infectivity is still ongoing.


http://www.isid.org/14th_icid/


http://ww2.isid.org/Downloads/IMED2009_AbstrAuth.pdf


http://www.isid.org/publications/ICID_Archive.shtml



14th ICID International Scientific Exchange Brochure -

Final Abstract Number: ISE.114

Session: International Scientific Exchange

Transmissible Spongiform encephalopathy (TSE) animal and human TSE in North America

update October 2009

T. Singeltary

Bacliff, TX, USA

Background:

An update on atypical BSE and other TSE in North America. Please remember, the typical U.K. c-BSE, the atypical l-BSE (BASE), and h-BSE have all been documented in North America, along with the typical scrapie's, and atypical Nor-98 Scrapie, and to date, 2 different strains of CWD, and also TME. All these TSE in different species have been rendered and fed to food producing animals for humans and animals in North America (TSE in cats and dogs ?), and that the trading of these TSEs via animals and products via the USA and Canada has been immense over the years, decades.

Methods:

12 years independent research of available data

Results:

I propose that the current diagnostic criteria for human TSEs only enhances and helps the spreading of human TSE from the continued belief of the UKBSEnvCJD only theory in 2009. With all the science to date refuting it, to continue to validate this old myth, will only spread this TSE agent through a multitude of potential routes and sources i.e. consumption, medical i.e., surgical, blood, dental, endoscopy, optical, nutritional supplements, cosmetics etc.

Conclusion:

I would like to submit a review of past CJD surveillance in the USA, and the urgent need to make all human TSE in the USA a reportable disease, in every state, of every age group, and to make this mandatory immediately without further delay. The ramifications of not doing so will only allow this agent to spread further in the medical, dental, surgical arena's. Restricting the reporting of CJD and or any human TSE is NOT scientific. Iatrogenic CJD knows NO age group, TSE knows no boundaries. I propose as with Aguzzi, Asante, Collinge, Caughey, Deslys, Dormont, Gibbs, Gajdusek, Ironside, Manuelidis, Marsh, et al and many more, that the world of TSE Transmissible Spongiform Encephalopathy is far from an exact science, but there is enough proven science to date that this myth should be put to rest once and for all, and that we move forward with a new classification for human and animal TSE that would properly identify the infected species, the source species, and then the route.

page 114 ;


http://ww2.isid.org/Downloads/14th_ICID_ISE_Abstracts.pdf



Wednesday, February 24, 2010

Transmissible Spongiform encephalopathy (TSE) animal and human TSE in North America 14th

ICID International Scientific Exchange Brochure -


http://transmissiblespongiformencephalopathy.blogspot.com/2010/02/transmissible-spongiform-encephalopathy.html



TSE

http://transmissiblespongiformencephalopathy.blogspot.com/



Wednesday, July 28, 2010

Atypical prion proteins and IBNC in cattle DEFRA project code SE1796 FOIA Final report

http://bse-atypical.blogspot.com/2010/07/atypical-prion-proteins-and-ibnc-in.html



Saturday, February 28, 2009

NEW RESULTS ON IDIOPATHIC BRAINSTEM NEURONAL CHROMATOLYSIS "All of the 15 cattle tested showed that the brains had abnormally accumulated PrP" 2009

SEAC 102/2

http://bse-atypical.blogspot.com/2009/02/new-results-on-idiopathic-brainstem.html



Monday, August 9, 2010

National Prion Disease Pathology Surveillance Center Cases Examined (July 31, 2010)

(please watch and listen to the video and the scientist speaking about atypical BSE and sporadic CJD and listen to Professor Aguzzi)

SEE where sporadic cjd in the USA went from 59 cases in 1997, to 216 cases in 2009. a steady increase since 1997. ...TSS

National Prion Disease Pathology Surveillance Center Cases Examined (July 31, 2010)

Year Total Referrals2 Prion Disease Sporadic Familial Iatrogenic vCJD

1997 114 68 59 9 0 0

to

2009 425 259 216 43 0 0

http://www.cjdsurveillance.com/pdf/case-table.pdf



see full text ;

http://prionunitusaupdate2008.blogspot.com/2010/08/national-prion-disease-pathology.html



Wednesday, August 18, 2010

Incidence of CJD Deaths Reported by CJD-SS in Canada as of July 31, 2010

http://creutzfeldt-jakob-disease.blogspot.com/2010/08/incidence-of-cjd-deaths-reported-by-cjd.html



Wednesday, September 08, 2010

Emerging Infectious Diseases: CJD, BSE, SCRAPIE, CWD, PRION, TSE Evaluation to Implementation for Transfusion and Transplantation September 2010

http://vcjdtransfusion.blogspot.com/2010/09/emerging-infectious-diseases-cjd-bse.html



Tuesday, September 14, 2010

Transmissible Spongiform Encephalopathies Advisory Committee; Notice of Meeting October 28 and 29, 2010 (COMMENT SUBMISSION)

http://tseac.blogspot.com/2010/09/transmissible-spongiform_14.html



Tuesday, September 28, 2010

Variant CJD: where has it gone, or has it?

Pract Neurol 2010; 10: 250–251

http://vcjdtransfusion.blogspot.com/2010/09/variant-cjd-where-has-it-gone-or-has-it.html



PRODUCT

1) Plasma Frozen within 24 hours (FP24). Recall # B-2448-10;

2) Red Blood Cells. Recall # B-2449-10;

3) Cryoprecipitated AHF. Recall # B-2450-10;

4) Plasma. Recall # B-2451-10

CODE

1) Units: W038509802210, W038509800965;

2) Units: W038509802210, W038509800965, W038508801111, W038508330725;

3) Unit: W03850830725;

4) Units: W038509801111, W038508330725

RECALLING FIRM/MANUFACTURER

Walter L. Shepeard Community Blood Center, Inc., Augusta, GA, by fax on July 9 and 21, 2010. Firm initiated recall is complete.

REASON

Blood products, collected from a donor considered to be at increased risk for variant Creutzfeldt-Jakob Disease (vCJD), were distributed.

VOLUME OF PRODUCT IN COMMERCE

9 units

DISTRIBUTION

Korea, SC, GA

___________________________________

PRODUCT

Recovered Plasma. Recall # B-2306-10

CODE

Unit: W137508110097

RECALLING FIRM/MANUFACTURER

Lane Memorial Blood Bank, Eugene, OR, by fax on June 10, 2010. Firm initiated recall is complete.

REASON

Blood product, collected from a donor considered to be at increased risk for variant Creutzfeldt-Jakob Disease (vCJD), was distributed.

VOLUME OF PRODUCT IN COMMERCE

1 unit

DISTRIBUTION

KY

___________________________________

PRODUCT

Red Blood Cells (Apheresis) Leukocytes Reduced. Recall # B-2348-10

CODE

Units: W041609075327D (part a and b), 3922801 (part a and b)

RECALLING FIRM/MANUFACTURER

Blood Systems Inc/dba United Blood Services, Meridian, MS, by telephone and fax on May 26, 2010 and May 28, 2010. Firm initiated recall is complete.

REASON

Blood products, collected from a donor considered to be at increased risk for variant Creutzfeldt-Jakob Disease (vCJD), were distributed.

VOLUME OF PRODUCT IN COMMERCE

4 units

DISTRIBUTION

MS

___________________________________

PRODUCT

1) Recovered Plasma. Recall # B-2363-10;

2) Cryoprecipitated AHF, Pooled. Recall # B-2364-10;

3) Red Blood Cells Leukocytes Reduced. Recall # B-2365-10

CODE

1) and 3) Units: 2613522, 2578779;

2) Unit: 2578779

RECALLING FIRM/MANUFACTURER

South Texas Blood and Tissue Center, San Antonio, TX, by fax and e-mail on May 5, 2010. Firm initiated recall is complete.

REASON

Blood products, collected from a donor considered to be at increased risk for variant Creutzfeldt-Jakob Disease (vCJD), were distributed.

VOLUME OF PRODUCT IN COMMERCE

5 units

DISTRIBUTION

TX

___________________________________

END OF ENFORCEMENT REPORT FOR OCTOBER 6, 2010

#

http://www.fda.gov/Safety/Recalls/EnforcementReports/ucm228605.htm



Friday, September 24, 2010

USA Blood products, collected from a donor who was at risk for vCJD, were distributed SEPTEMBER 2010

http://vcjdtransfusion.blogspot.com/2010/09/usa-blood-products-collected-from-donor.html




TSS

Labels: , , , ,

Saturday, January 24, 2009

Bovine Spongiform Encephalopathy h-BSE ATYPICAL USA 2008 Annual Report

Research Project: Study of Atypical Bse

Location: Virus and Prion Diseases of Livestock

2008 Annual Report

1a.Objectives (from AD-416) The objective of this cooperative research project with Dr. Maria Caramelli from the Italian BSE Reference Laboratory in Turin, Italy, is to conduct comparative studies with the U.S. bovine spongiform encephalopathy (BSE) isolate and the atypical BSE isolates identified in Italy. The studies will cover the following areas: 1. Evaluation of present diagnostics tools used in the U.S. for the detection of atypical BSE cases. 2. Molecular comparison of the U.S. BSE isolate and other typical BSE isolates with atypical BSE cases. 3. Studies on transmissibility and tissue distribution of atypical BSE isolates in cattle and other species.

1b.Approach (from AD-416) This project will be done as a Specific Cooperative Agreement with the Italian BSE Reference Laboratory, Istituto Zooprofilattico Sperimentale del Piemonte, in Turin, Italy. It is essential for the U.S. BSE surveillance program to analyze the effectiveness of the U.S diagnostic tools for detection of atypical cases of BSE. Molecular comparisons of the U.S. BSE isolate with atypical BSE isolates will provide further characterization of the U.S. BSE isolate. Transmission studies are already underway using brain homogenates from atypical BSE cases into mice, cattle and sheep. It will be critical to see whether the atypical BSE isolates behave similarly to typical BSE isolates in terms of transmissibility and disease pathogenesis. If transmission occurs, tissue distribution comparisons will be made between cattle infected with the atypical BSE isolate and the U.S. BSE isolate. Differences in tissue distribution could require new regulations regarding specific risk material (SRM) removal.

3.Progress Report The aim of the cooperative research project "Study of atypical BSE" led by CEA (Italian Reference Centre for Animal TSE) and USDA is to compare Italian and U.S. Bovine sponigiform encephalopathy (BSE) confirmatory protocols in the detection of classical (C-) and atypical (H- and L-type) BSE cases. In the course of this project samples of Italian C-BSE and Italian L-type BSE (BASE), both frozen and formalin fixed, have been sent to USDA laboratories in Ames, to undergo Western blot and Immunohstochemical (IHC) comparison studies for PrP**Sc detection according to U.S. and Italian methods. In 2007, the comparative study between U.S. and Italian BSE confirmatory protocols was performed. The collaborator sent a scientist to Ames to assist in performing the Italian IHC protocol on the BSE samples chosen for the study. Results obtained showed that the Italian and U.S. IHC procedures were alike in PrP**Sc detection regarding its distribution, deposition pattern and intensity of staining on all the C-, L- and H-type BSE cases considered. In addition, the U.S. protocol evidenced the characteristic presence of plaques in the frontal cortex of the Italian BASE case similar to the Italian protocol. Methods used for monitoring include email, site visits, and periodic written reports. This project addresses NP 103, component 8.



http://www.ars.usda.gov/research/projects/projects.htm?ACCN_NO=408490&showpars=true&fy=2008



Research Project: Study of Atypical Bse Location: Virus and Prion Diseases of Livestock

Project Number: 3625-32000-086-05 Project Type: Specific Cooperative Agreement

Start Date: Sep 15, 2004 End Date: Sep 14, 2009

Objective: The objective of this cooperative research project with Dr. Maria Caramelli from the Italian BSE Reference Laboratory in Turin, Italy, is to conduct comparative studies with the U.S. bovine spongiform encephalopathy (BSE) isolate and the atypical BSE isolates identified in Italy. The studies will cover the following areas: 1. Evaluation of present diagnostics tools used in the U.S. for the detection of atypical BSE cases. 2. Molecular comparison of the U.S. BSE isolate and other typical BSE isolates with atypical BSE cases. 3. Studies on transmissibility and tissue distribution of atypical BSE isolates in cattle and other species.

Approach: This project will be done as a Specific Cooperative Agreement with the Italian BSE Reference Laboratory, Istituto Zooprofilattico Sperimentale del Piemonte, in Turin, Italy. It is essential for the U.S. BSE surveillance program to analyze the effectiveness of the U.S diagnostic tools for detection of atypical cases of BSE. Molecular comparisons of the U.S. BSE isolate with atypical BSE isolates will provide further characterization of the U.S. BSE isolate. Transmission studies are already underway using brain homogenates from atypical BSE cases into mice, cattle and sheep. It will be critical to see whether the atypical BSE isolates behave similarly to typical BSE isolates in terms of transmissibility and disease pathogenesis. If transmission occurs, tissue distribution comparisons will be made between cattle infected with the atypical BSE isolate and the U.S. BSE isolate. Differences in tissue distribution could require new regulations regarding specific risk material (SRM) removal.



http://www.ars.usda.gov/research/projects/projects.htm?ACCN_NO=408490



Research Project: Study of Atypical Bse Location: Virus and Prion Diseases of Livestock

2007 Annual Report

1a.Objectives (from AD-416) The objective of this cooperative research project with Dr. Maria Caramelli from the Italian BSE Reference Laboratory in Turin, Italy, is to conduct comparative studies with the U.S. bovine spongiform encephalopathy (BSE) isolate and the atypical BSE isolates identified in Italy. The studies will cover the following areas: 1. Evaluation of present diagnostics tools used in the U.S. for the detection of atypical BSE cases. 2. Molecular comparison of the U.S. BSE isolate and other typical BSE isolates with atypical BSE cases. 3. Studies on transmissibility and tissue distribution of atypical BSE isolates in cattle and other species.

1b.Approach (from AD-416) This project will be done as a Specific Cooperative Agreement with the Italian BSE Reference Laboratory, Istituto Zooprofilattico Sperimentale del Piemonte, in Turin, Italy. It is essential for the U.S. BSE surveillance program to analyze the effectiveness of the U.S diagnostic tools for detection of atypical cases of BSE. Molecular comparisons of the U.S. BSE isolate with atypical BSE isolates will provide further characterization of the U.S. BSE isolate. Transmission studies are already underway using brain homogenates from atypical BSE cases into mice, cattle and sheep. It will be critical to see whether the atypical BSE isolates behave similarly to typical BSE isolates in terms of transmissibility and disease pathogenesis. If transmission occurs, tissue distribution comparisons will be made between cattle infected with the atypical BSE isolate and the U.S. BSE isolate. Differences in tissue distribution could require new regulations regarding specific risk material (SRM) removal.

3.Progress Report This report serves to document research conducted under a specific cooperative agreement between ARS and the Italian Reference Centre for Animal TSE (CEA) at the Istituto Zooprofilattico Sperimentale, Turin, Italy. Additional details of research can be found in the report for the parent project 3625-32000-086-00D, Transmission, Differentiation, and Pathobiology of Transmissible Spongiform Encephalopathies. The aim of the cooperative research project conducted by the CEA and ARS is to compare the U.S. bovine spongiform encephalopathy (BSE) isolates and the bovine amyloidotic spongiform encephalopathy isolates (BASE) identified in Italy. The first objective was to determine whether diagnostic methods routinely used by USDA are able to identify the Italian BASE cases. For this purpose, CEA received the immunohistochemistry (IHC) protocol developed by APHIS-USDA. The IHC protocol was reproduced and standardized in the CEA laboratory and will be applied to the Italian BSE and BASE cases. Furthermore, fixed brainstem sections and frozen brainstem material from Italian BSE and BASE cases were sent to ARS for analysis using USDA IHC and Western blot (WB) methods. At present, western blot analyses have been completed, as reported in the scientific reports 2005 and 2006. Since the Ventana NexES IHC Staining System is no longer in production and therefore could not be purchased in Italy, a researcher from our group will be sent to the NVSL laboratories in Ames in order to compare the USDA and Italian IHC methods. During the past year there were regular contacts with the cooperator. These contacts included one site visit and e-mail correspondence to discuss the progress of the project.



http://www.ars.usda.gov/research/projects/projects.htm?ACCN_NO=408490&showpars=true&fy=2007



Research Project: Molecular Method for Prion Strain Analysis Location: Foodborne Contaminants Research

2008 Annual Report

1a.Objectives (from AD-416) The goal of the proposed research is to develop molecular methods to distinguish and thereby analyze different prion strains. If successful, these methods could be used to address the following question: Is the December, 2003 North American BSE case the same strain as the United Kingdom BSE strain, or is it analogous to rare atypical BSE cases such as those seen in Italy and Japan? The UK strain has been linked to feed contaminated with BSE, wheras the atypical cases are hypothesized to be of sporadic origin. The answer to this question has obvious implications for. 1)the scientific basis of regulations that are designed to prevent future BSE cases caused by feed contamination and. 2)the explanation as to the cause of future BSE cases which may still arise despite 100% compliance of feed ban regulations.

1b.Approach (from AD-416) Transmissible spongiform encephalophies (TSEs) affect humans and domesticated animals such as sheep (scrapie) and cattle (BSE). TSEs can be genetic (inherited mutations in the prion gene), infectious (dietary or accidental exposure to prions as in iatrogenic cases or consumption of prion-infected food) or sporadic v.g. sporadic Cruetzfeld-Jacob Disease (CJD).

Prions have properties that are maintained upon transmission from one host to the next, allowing different 'strains' to be distinguished. Strains cause specific phenotypes, such as different symptoms, incubation time, and tissue distribution of PrPSc. Differentiation of strains is of paramount importance: as an example, the strain of sheep PrPSc that causes scrapie is not transmissible to humans, while the strain that causes ovine BSE presumably is. By SDS-PAGE analysis, PrPSc from different strains maintain specific ratios of non-, mono-, and di-glycosylated glycoforms and different size of the proteinase K (PK) resistent core.

However, these methods have significant limitations. Some strains exhibit similar glycoform patterns, and prions of a given strain isolated from different regions of the brain show differences in glycoform patterns, leading to uncertainty. Examination of the molecular weight of PrPSc after proteolysis by SDS-PAGE can only distinguish gross molecular weight differences.

We propose to develop new methods to differentiate prion strains based on mass spectrometric analysis. Specifically, we will use tandem mass spectrometry to identify and quantitate peptides of different molecular weights after treatment of the PK-resistant core with trypsin.

The scope of this work is to provide proof of principle in a well characterized animal model. If sucessful, future effort will focus on adaptation from animal models to BSE. Documents SCA with U. of Compostela Santiago. Formerly 5325-32000-003-02S (5/07). Formerly 5325-32000-007-01S (4/08).

3.Progress Report

The goal of this project is mass spectrometry based methodology for detection Transmissible Spongiform Encephalopathy (TSE) diseases. We are using tandem mass spectrometry to identify and quantitate the peptides resulting from the trypsin digestion of the proteinase K resistant core of the prion molecule. Our method has proven successful using a rodent disease model. We are working to apply this technique to the detect prions in sheep, deer, and cattle.

The ADODR monitors this project through annual visits to cooperator’s lab, meetings with the cooperator at scientific symposia, occasional telephone conversations and frequent email. ADODR and Cooperator regularly co-author peer-reviewed scientific publications.



http://www.ars.usda.gov/research/projects/projects.htm?ACCN_NO=408803&showpars=true&fy=2008



Research Project: Bse Pathogenesis Study Location: Virus and Prion Diseases of Livestock

2008 Annual Report

1a.Objectives (from AD-416) The objective of this cooperative research project is to obtain material from an oral bovine spongiform encephalopathy (BSE) pathogenesis study performed at the Veterinary Laboratories Agency (VLA)-Weybridge in the United Kingdom. These BSE materials will be used to identify PrPd tissue distribution and migration in BSE infected cattle.

1b.Approach (from AD-416) We will obtain various materials from the bovine spongiform encephalophathy (BSE) oral pathogenesis study. These materials will be used to identify PrPd tissue distribution and migration employing validated and non-validated PrPd detecting methods developed at the NADC for use with CWD and scrapie. At necropsy, approximately 80 samples were taken from the animals at various time points post infection. This study also included ante mortem sampling of body fluids like blood, cerebrospinal fluid, urine, saliva, nasal secretions, feces and milk at determined intervals.

3.Progress Report Materials from an oral Bovine spongiform encephalopathy (BSE) pathogenesis study performed at the VLA-Weybridge in the United Kingdom were imported to the NADC for the purpose of identifying PrPres tissue distribution and migration in BSE-infected cattle. Samples include milk, placenta, serum, bone marrow, and frozen and paraffin embedded brain tissues. Technical difficulties with the PMCA assay in our lab have resulted in us suspending our research on these tissues until better techniques become available. Additional funds remain in the agreement and plans are being made to request additional samples from visual system and other tissues that tie in with work currently underway with non-BSE Transmissible spongiform encephelopathies (TSEs) here at the NADC. Methods for monitoring this project are primarily e-mail with periodic phone calls; however, since the remaining research to be conducted is our portion of the SCA, fewer contacts will be needed until such time we begin preparing manuscripts. This project addresses NP 103, component 8.



http://www.ars.usda.gov/research/projects/projects.htm?ACCN_NO=408830&showpars=true&fy=2008




>>>Materials from an oral Bovine spongiform encephalopathy (BSE) pathogenesis study performed at the VLA-Weybridge in the United Kingdom were imported to the NADC for the purpose of identifying PrPres tissue distribution and migration in BSE-infected cattle. Samples include milk, placenta, serum, bone marrow, and frozen and paraffin embedded brain tissues. Technical difficulties with the PMCA assay in our lab have resulted in us suspending our research on these tissues until better techniques become available.<<<


??? same old BSe. ...TSS


3.57 The experiment which might have determined whether BSE and scrapie were caused by the same agent (ie, the feeding of natural scrapie to cattle) was never undertaken in the UK. It was, however, performed in the USA in 1979, when it was shown that cattle inoculated with the scrapie agent endemic in the flock of Suffolk sheep at the United States Department of Agriculture in Mission, Texas, developed a TSE quite unlike BSE.339 The findings of the initial transmission, though not of the clinical or neurohistological examination, were communicated in October 1988 to Dr Watson, Director of the CVL, following a visit by Dr Wrathall, one of the project leaders in the Pathology Department of the CVL, to the United States Department of Agriculture.340 The results were not published at this point, since the attempted transmission to mice from the experimental cow brain had been inconclusive. The results of the clinical and histological differences between scrapie-affected sheep and cattle were published in 1995. Similar studies in which cattle were inoculated intracerebrally with scrapie inocula derived from a number of scrapie-affected sheep of different breeds and from different States, were carried out at the US National Animal Disease Centre.


341 The results, published in 1994, showed that this source of scrapie agent, though pathogenic for cattle, *** did not produce the same clinical signs of brain lesions characteristic of BSE. ***


3.58 There are several possible reasons why the experiment was not performed in the UK. It had been recommended by Sir Richard Southwood (Chairman of the Working Party on Bovine Spongiform Encephalopathy) in his letter to the Permanent Secretary of MAFF, Mr (now Sir) Derek Andrews, on 21 June 1988,342 though it was not specifically recommended in the Working Party Report or indeed in the Tyrrell Committee Report (details of the Southwood Working Party and the Tyrell Committee can be found in vol. 4: The Southwood Working Party, 1988-89 and vol. 11: Scientists after Southwood respectively). The direct inoculation of scrapie into calves was given low priority, because of its high cost and because it was known that it had already taken place in the USA.343 It was also felt that the results of such an experiment would be hard to interpret. While a negative result 337



Fraser, H., Bruce, M., Chree, A., McConnell, I. and Wells, G. (1992) Transmission of Bovine Spongiform Encephalopathy and Scrapie to Mice, Journal of General Virology, 73, 1891-7; Bruce, M., Chree, A., McConnell, I., Foster, J., Pearson, G. and Fraser, H. (1994) Transmission of Bovine Spongiform Encephalopathy and Scrapie to Mice: Strain Variation and the Species Barrier, Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 343, 405-11 338 Bruce, M., Will, R., Ironside, J., McConell, I., Drummond, D., Suttie, A., McCordie, L., Chree, A., Hope, J., Birkett, C., Cousens, S., Fraser, H. and Bostock, C. (1997) Transmissions to Mice Indicate that 'New Variant' CJD is Caused by the BSE Agent, Nature, 389, 498-501 339 Clark, W., Hourrigan, J. and Hadlow, W. (1995) Encephalopathy in Cattle Experimentally Infected with the Scrapie Agent, American Journal of Veterinary Research, 56, 606-12 340 YB88/10.00/1.1 341 Cutlip, R., Miller, J., Race, R., Jenny, A., Katz, J., Lehmkuhl, H., Debey, B. and Robinson, M. (1994) Intracerebral Transmission of Scrapie to Cattle, Journal of Infectious Diseases, 169, 814-20 342 YB88/6.21/1.2 343 YB88/11.17/2.4 SCIENCE 84


would be informative, a positive result would need to demonstrate that when scrapie was transmitted to cattle, the disease which developed in cattle was the same as BSE.344 Given the large number of strains of scrapie and the possibility that BSE was one of them, it would be necessary to transmit every scrapie strain to cattle separately, to test the hypothesis properly. Such an experiment would be expensive. Secondly, as measures to control the epidemic took hold, the need for the experiment from the policy viewpoint was not considered so urgent. It was felt that the results would be mainly of academic interest.345 3.59 Nevertheless, from the first demonstration of transmissibility of BSE in 1988, the possibility of differences in the transmission properties of BSE and scrapie was clear. Scrapie was transmissible to hamsters, but by 1988 attempts to transmit BSE to hamsters had failed. Subsequent findings increased that possibility.


http://www.bseinquiry.gov.uk/pdf/volume2/chapter3.pdf



http://www.regulations.gov/fdmspublic/ContentViewer?objectId=09000064801f8152&disposition=attachment&contentType=msw8




IN CONFIDENCE PERCEPTION OF UNCONVENTENTIONAL SLOW VIRUS DISEASES OF ANIMALS IN THE USA 1985 The Stetsonville outbreak (farmer's name: Brecke). In addition to the downer cows and horses Brecke's mink recieved a cereal supplement. Hartsough's view was that this would contain bone meal and would be from a commercial source. If this were so and it was contaminated with a TME agent why were no other ranches affected? Many mink ranches now feed a commerical pelleted diet. Brecke was equipped to process LARGE CARCASSES USING A CRUSHER/MIXER WHICH COULD ACCOMMODATE A WHOLE COW!

snip...

Wilbur Clarke (reference the Mission, Texas scrapie transmission transmission to cattle study) is now the State Veterinarian for Montana based at Helena. I was given confidential access to sections from the Clarke scrapie-cattle transmission experiment. Details of the experimental design were as supplied previously by Dr. Wrathall (copy of relevant information appended). Only 3 animals (2 inoculated with 2nd pass Suffolk scrapie and 1 inoculated with Angora goat passaged scrapie) showed clinical signs. Clinical signs were characterised by weakness, ''a stilted hindlimb gait'', disorientation, ataxia and, terminally, lateral recumbency. The two cattle from which I examined material were inocluated at 8 months of age and developed signs 36 months pi (goat scrapie inoculum) and 49 months pi (one of the Suffolk scrapie inoculated) respectively. This latter animal was killed at 58 months of age and so the clinical duration was only 1 month. The neuropathology was somewhat different from BSE or the Stetsonville TME in cattle. Vacuolar changes were minimal, to the extent that detection REQUIRED CAREFUL SEARCHING. Conversely astrocyte hypertrophy was a widespread and prominent feature. The material requires DETAILED NEUROPATHOLOGICAL ASSESSMENT BUT WHETHER OR NOT THIS WILL BE DONE REMAINS A QUESTION.

snip...

were there extensive neurologic lesions, which are primary for BSE, such as severe vacuolation of neurons and neuropil or neuronal necrosis and gliosis. Although some vacuolation of neuropil, chromotolysis in neurons, and gliosis were seen in the brains of some affected calves, these were industinguishable from those of controls. Vacuolated neurons in the red nucleus of both challenged and normal calves were considered normal for the bovines as previously described (50). PrP-res was found in ALL CHALLENGED CALVES REGARDLESS OF CLINCIAL SIGNS, and the amount of PrP-res positively related to the length of the incubation. ...

snip...

WE also conclude from these studies that scrapie in cattle MIGHT NOT BE RECOGNIZED BY ROUTINE HISTOPATHOLOGICAL EXAMINATION OF THE BRAIN AND SUGGEST THAT DETECTION OF PrP-res by immunohistochemistry or immunoblotting is necessary to make a definitive diagnosis. THUS, undiagnosed scrapie infection could contribute to the ''DOWNER-COW'' syndrome and could be responsible for some outbreaks of transmissible mink encephalopathy proposed by Burger and Hartsough (8) and Marsh and harsough (52). ...

snip...

Multiple sources of sheep affected with scrapie and two breeds of cattle from several sources were used inthe current study in an effort to avoid a single strain of either agent or host. Preliminary results from mouse inoculations indicate multiple strains of the agent were present in the pooled inoculum (unpublished data). ...

Transmission of the sheep scrapie to cattle was attempted in 1979 by using intracerebral, intramuscular, subcutaneous, and oral routes of inoculation of 5, 8- to 11-month old cattlw with a homologous mixture of brain from 1 affected sheep (61, 62). ONE of the 5 cattle develped neurologic signs 48 months after inoculation. Signs were disorientation, incoordination, a stiff-legged stilted gait, progressive difficulty in rising, and finally in terminal recumbency. The clinical course was 2.5 months. TWO of the 5 cattle similarly inoculated with brain tissue from a goat with scrapie exhibited similar signs 27 and 36 months after incoluation. Clinical courses were 43 an 44 days. Brain lesions of mild gliosis and vacuolation and mouse inoculation data were insufficient to confirm a diagnosis of scrapie. This work remained controversial until recent examination of the brains detected PrP-res in all 3 cattle with neurologic disease but in none of the unaffected cattle (62). Results of these studies are similar to ours and underscore the necessity of methods other than histopathology to diagnose scrapie infection in cattle. We believe that immunologic techniques for detecting PrP-res currently provide the most sensitive and reliable way to make a definitive diagnosis...



http://www.bseinquiry.gov.uk/files/sc/seac17/tab03.pdf



Visit to USA ... info on BSE and Scrapie



http://www.bseinquiry.gov.uk/files/yb/1988/10/00001001.pdf



http://www.ngpc.state.ne.us/cgi-bin/ultimatebb.cgi?ubb=get_topic;f=12;t=000385



12/10/76 AGRICULTURAL RESEARCH COUNCIL REPORT OF THE ADVISORY COMMITTE ON SCRAPIE

Office Note CHAIRMAN: PROFESSOR PETER WILDY

snip...

A The Present Position with respect to Scrapie A] The Problem Scrapie is a natural disease of sheep and goats. It is a slow and inexorably progressive degenerative disorder of the nervous system and it ia fatal. It is enzootic in the United Kingdom but not in all countries. The field problem has been reviewed by a MAFF working group (ARC 35/77). It is difficult to assess the incidence in Britain for a variety of reasons but the disease causes serious financial loss; it is estimated that it cost Swaledale breeders alone $l.7 M during the five years 1971-1975. A further inestimable loss arises from the closure of certain export markets, in particular those of the United States, to British sheep. 9/13/2005 Page 17 of 17 It is clear that scrapie in sheep is important commercially and for that reason alone effective measures to control it should be devised as quickly as possible. Recently the question has again been brought up as to whether scrapie is transmissible to man. This has followed reports that the disease has been transmitted to primates. One particularly lurid speculation (Gajdusek 1977) conjectures that the agents of scrapie, kuru, Creutzfeldt-Jakob disease and transmissible encephalopathy of mink are varieties of a single "virus". The U.S. Department of Agriculture concluded that it could "no longer justify or permit scrapie-blood line and scrapie-exposed sheep and goats to be processed for human or animal food at slaughter or rendering plants" (ARC 84/77)" The problem is emphasised by the finding that some strains of scrapie produce lesions identical to the once which characterise the human dementias" Whether true or not. the hypothesis that these agents might be transmissible to man raises two considerations. First, the safety of laboratory personnel requires prompt attention. Second, action such as the "scorched meat" policy of USDA makes the solution of the acrapie problem urgent if the sheep industry is not to suffer grievously.

snip... 76/10.12/4.6


http://www.bseinquiry.gov.uk/files/yb/1976/10/12004001.pdf



THE infamous USA SPORADIC CJDs, something to ponder; IF the USA TSE in cattle all does not look like UK BSE, why would all USA human TSE look like UK nvCJD??? over 20 strains of scrapie documented to date with new atypical strains now being documented in sheep and goat i.e. BSE. atypical strains of BSE/TSE showing up in cattle in different countries? ALL animals for human/animal consumption must be tested for TSE. ALL human TSEs must be made reportable Nationally and Internationally, OF ALL AGES... IN a time when FSIS/APHIS/USDA/FDA et al should be strengthening the TSE regulations, it seems corporate interest has won out again over sound science and consumer protection from an agent that is 100% fatal for the ones that go clinical. With the many different atypical TSEs showing up in different parts of the world, and with GWs BSE MRR policy (the legal policy of trading all strains of TSEs), the battle that has waged for the last 25 years to eradicate this agent from this planet will be set back decades, if not lost for good. ...

Terry S. Singeltary Sr. P.O. Box 42 Bacliff, Texas USA 77518



http://www.fsis.usda.gov/oppde/comments/03-025ifa/03-025ifa-2.pdf



Over the next 8-10 weeks, approximately 40% of all the adult mink on the farm died from TME. Since previous incidences of TME were associated with common or shared feeding practices, we obtained a careful history of feed ingredients used over the past 12-18 months. ***The rancher was a “dead stock” feeder using mostly (>95%) downer or dead dairy cattle and a few horses. Sheep had never been fed.***

snip...end



http://www.bseinquiry.gov.uk/files/mb/m09/tab05.pdf



Epidemiology Epidemiologic studies suggest that animals contract the disease by external exposure to the infectious agent, such as by eating contaminated feed. No evidence suggests that the TME agent spreads by contact between unrelated mink or from mother to nursing young. The disease has been identified in both genders and all color phases in animals greater than 1 year old. The first documented TME outbreak in the United States occurred in 1947 on one ranch in Wisconsin and then on a ranch in Minnesota that had received mink from the Wisconsin ranch. In 1961, TME outbreaks occurred on five ranches in Wisconsin. In Factsheet Veterinary Services February 2002 APHIS 1963, outbreaks occurred in Idaho, Minnesota, and Wisconsin. Epidemiologic data from the Minnesota and Wisconsin outbreaks trace the cases in those States to one common purchased food source.

snip...

The 1985 Stetsonville Outbreak The most recent TME outbreak occurred on one mink ranch in Stetsonville, WI, in 1985. In the herd of 7,300 adult mink, 60 percent of the animals died. Clinical signs included tail arching, incoordination, and hyperexcitability. At the most advanced stages of the disease, the animals were in trancelike states and eventually died. The outbreak lasted 5 months. Microscopic examination of sections of the brain confirmed the spongelike changes characteristic of TME. Diagnostic tests identified the prion protein. The following year, mink born during the outbreak showed no signs of TME. The late Richard Marsh, a veterinary virologist at the University of Wisconsin who studied the transmission of TME and other TSE’s, investigated this outbreak. Marsh learned that the mink were fed a diet composed of fresh meat products from “downer cattle” and commercial sources of fish, poultry, and cereal. Downer cattle are nonambulatory and cannot rise because they are affected with a condition such as a metabolic disease, broken limbs, or a central nervous system disorder. Marsh theorized that the meat from these downer cattle introduced a TSE agent to the mink in which TME resulted. Although Marsh’s hypothesis is based on speculation and anecdotal evidence, in 1993 APHIS adjusted its national BSE surveillance program to include testing downer cattle for evidence of a TSE. The brains of more than 20,141 cattle have been examined at APHIS’ National Veterinary Services Laboratories and other State diagnostic laboratories. Not a single tissue sample has revealed evidence of BSE or another TSE in cattle.



http://www.aphis.usda.gov/publications/animal_health/content/printable_version/fs_ahtme.pdf



AND as everyone knows, the rest is history, those dead-stock downers, the most high risk cattle, were NOT tested, and in FACT, was a major source of YOUR CHILDRENS SCHOOL LUNCH PROGRAM, all across the Nation. sorry, these are the most high risk cattle for TSE aka mad cow disease, and i am a bit touchy about this topic. ...sorry. ...terry

DOWNER COW SCHOOL LUNCH PROGRAM



http://downercattle.blogspot.com/



Sunday, December 28,

2008 MAD COW DISEASE USA DECEMBER 28, 2008 an 8 year review of a failed and flawed policy



http://bse-atypical.blogspot.com/2008/12/mad-cow-disease-usa-december-28-2008-8.html



Friday, August 29, 2008

CREEKSTONE VS USDA COURT OF APPEALS, BUSH SAYS, NO WAY, NO HOW



http://madcowtesting.blogspot.com/2008/08/creekstone-vs-usda-court-of-appeals.html



Wednesday, August 20, 2008

Bovine Spongiform Encephalopathy Mad Cow Disease typical and atypical strains, was there a cover-up ?



http://bse-atypical.blogspot.com/2008/08/bovine-spongiform-encephalopathy-mad.html



Sunday, March 16, 2008

MAD COW DISEASE terminology UK c-BSE (typical), atypical BSE H or L, and or Italian L-BASE



http://bse-atypical.blogspot.com/2008/03/mad-cow-disease-terminology-uk-c-bse.html



November 25, 2008

Update On Feed Enforcement Activities To Limit The Spread Of BSE



http://madcowfeed.blogspot.com/2008/11/november-2008-update-on-feed.html



"the biochemical signature of PrPres in the BASE-inoculated animal was found to have a higher proteinase K sensitivity of the octa-repeat region. We found the same biochemical signature in three of four human patients with sporadic CJD and an MM type 2 PrP genotype who lived in the same country as the infected bovine." ...

interesting. ... TSS

Thursday, June 05, 2008

Review on the epidemiology and dynamics of BSE epidemics

Vet. Res. (2008) 39:15 www.vetres.org DOI: 10.1051/vetres:2007053 c INRA, EDP Sciences, 2008 Review article

snip...

And last but not least, similarities of PrPres between Htype BSE and human prion diseases like CJD or GSS have been put forward [10], as well as between L-type BSE and CJD [17]. These findings raise questions about the origin and inter species transmission of these prion diseases that were discovered through the BSE active surveillance.

snip...

Cases of atypical BSE have only been found in countries having implemented large active surveillance programs. As of 1st September 2007, 36 cases (16 H, 20 L) have been described all over the world in cattle: Belgium (1 L) [23], Canada (1 H)15, Denmark (1 L)16, France (8 H, 6 L)17, Germany (1 H, 1 L) [13], Italy (3 L)18, Japan (1 L) [71], Netherlands (1 H, 2 L)19, Poland (1 H, 6 L)20, Sweden (1 H)21, United Kingdom (1 H)22, and USA (2 H)23. Another H-type case has been found in a 19 year old miniature zebu in a zoological park in Switzerland [56]. It is noteworthy that atypical cases have been found in countries that did not experience classical BSE so far, like Sweden, or in which only few cases of classical BSE have been found, like Canada or the USA.

And last but not least, similarities of PrPres between Htype BSE and human prion diseases like CJD or GSS have been put forward [10], as well as between L-type BSE and CJD [17]. These findings raise questions about the origin and inter species transmission of these prion diseases that were discovered through the BSE active surveillance.

full text 18 pages ;



http://www.vetres.org/index.php?option=article&access=standard&Itemid=129&url=/articles/vetres/pdf/2008/04/v07232.pdf



snip...



http://bse-atypical.blogspot.com/2008/06/review-on-epidemiology-and-dynamics-of.html



please see full text ;

Monday, December 22, 2008 [Docket No. FDA-2008-D-0597] Draft Guidance for Industry: Small Entities Compliance Guide for Renderers-Substances Prohibited From Use in Animal Food



http://madcowfeed.blogspot.com/2008/12/docket-no-fda2008d0597-draft-guidance.html



Tuesday, November 11, 2008

Transmission of atypical bovine prions to mice transgenic for human prion protein

DOI: 10.3201/eid1412.080941



http://bse-atypical.blogspot.com/2008/11/transmission-of-atypical-bovine-prions.html



Tuesday, June 3, 2008

SCRAPIE USA UPDATE JUNE 2008 NOR-98 REPORTED PA



http://nor-98.blogspot.com/2008/06/scrapie-usa-update-june-2008-nor-98.html



SCRAPIE USA



http://scrapie-usa.blogspot.com/



Sunday, September 07, 2008

CWD LIVE TEST, and the political aspects or fallout of live testing for BSE in cattle in the USA



http://chronic-wasting-disease.blogspot.com/2008/09/cwd-live-test-and-political-aspects-or.html



Manuscript Draft Manuscript Number: Title: HUMAN and ANIMAL TSE Classifications i.e. mad cow disease and the UKBSEnvCJD only theory Article Type: Personal View Corresponding Author: Mr. Terry S. Singeltary, Corresponding Author's Institution: na First Author: Terry S Singeltary, none Order of Authors: Terry S Singeltary, none; Terry S. Singeltary Abstract: TSEs have been rampant in the USA for decades in many species, and they all have been rendered and fed back to animals for human/animal consumption. I propose that the current diagnostic criteria for human TSEs only enhances and helps the spreading of human TSE from the continued belief of the UKBSEnvCJD only theory in 2007.



http://www.regulations.gov/fdmspublic/ContentViewer?objectId=090000648027c28e&disposition=attachment&contentType=pdf



THE last two mad cows documented in the USA were in Alabama and Texas, both of which were atypical h-BSE.

SINGE then, the surveillance for TSE in cattle in the USA has been reduced to a number of which detecting any TSE would almost impossible.

Brown, who is preparing a scientific paper based on the latest two mad cow cases to estimate the maximum number of infected cows that occurred in the United States, said he has "absolutely no confidence in USDA tests before one year ago" because of the agency's reluctance to retest the Texas cow that initially tested positive.

USDA officials finally retested the cow and confirmed it was infected seven months later, but only at the insistence of the agency's inspector general.

"Everything they did on the Texas cow makes everything USDA did before 2005 suspect," Brown said. ...snip...end



http://www.upi.com/ConsumerHealthDaily/view.php?StoryID=20060315-055557-1284r



In this context, a word is in order about the US testing program. After the discovery of the first (imported) cow in 2003, the magnitude of testing was much increased, reaching a level of >400,000 tests in 2005 (Figure 4). Neither of the 2 more recently indigenously infected older animals with nonspecific clinical features would have been detected without such testing, and neither would have been identified as atypical without confirmatory Western blots. Despite these facts, surveillance has now been decimated to 40,000 annual tests (USDA news release no. 0255.06, July 20, 2006) and invites the accusation that the United States will never know the true status of its involvement with BSE.

In short, a great deal of further work will need to be done before the phenotypic features and prevalence of atypical BSE are understood. More than a single strain may have been present from the beginning of the epidemic, but this possibility has been overlooked by virtue of the absence of widespread Western blot confirmatory testing of positive screening test results; or these new phenotypes may be found, at least in part, to result from infections at an older age by a typical BSE agent, rather than neonatal infections with new "strains" of BSE. Neither alternative has yet been investigated.



http://www.cdc.gov/ncidod/EID/vol12no12/06-0965.htm



A New Prionopathy OR more of the same old BSe and sporadic CJD



http://creutzfeldt-jakob-disease.blogspot.com/2008/08/new-prionopathy-or-more-of-same-old-bse.html



Communicated by: Terry S. Singeltary Sr.

[In submitting these data, Terry S. Singeltary Sr. draws attention to the steady increase in the "type unknown" category, which, according to their definition, comprises cases in which vCJD could be excluded. The total of 26 cases for the current year (2007) is disturbing, possibly symptomatic of the circulation of novel agents. Characterization of these agents should be given a high priority. - Mod.CP]



http://pro-med.blogspot.com/2007/11/proahedr-prion-disease-update-2007-07.html



http://www.promedmail.org/pls/askus/f?p=2400:1001:6833194127530602005::NO::F2400_P1001_BACK_PAGE,F2400_P1001_PUB_MAIL_ID:1010,39963



There is a growing number of human CJD cases, and they were presented last week in San Francisco by Luigi Gambatti(?) from his CJD surveillance collection.

He estimates that it may be up to 14 or 15 persons which display selectively SPRPSC and practically no detected RPRPSC proteins.



http://www.fda.gov/ohrms/dockets/ac/06/transcripts/1006-4240t1.htm


http://www.fda.gov/ohrms/dockets/ac/06/transcripts/2006-4240t1.pdf



sporadic Fatal Familial Insomnia



http://sporadicffi.blogspot.com/



JOURNAL OF NEUROLOGY

MARCH 26, 2003

RE-Monitoring the occurrence of emerging forms of Creutzfeldt-Jakob

disease in the United States

Email Terry S. Singeltary:

mhtml:%7B33B38F65-8D2E-434D-8F9B-8BDCD77D3066%7Dmid://00000250/!x-usc:mailto:flounder@wt.net

I lost my mother to hvCJD (Heidenhain Variant CJD). I would like to comment on the CDC's attempts to monitor the occurrence of emerging forms of CJD. Asante, Collinge et al [1] have reported that BSE transmission to the 129-methionine genotype can lead to an alternate phenotype that is indistinguishable from type 2 PrPSc, the commonest sporadic CJD. However, CJD and all human TSEs are not reportable nationally. CJD and all human TSEs must be made reportable in every state and internationally. I hope that the CDC does not continue to expect us to still believe that the 85%+ of all CJD cases which are sporadic are all spontaneous, without route/source. We have many TSEs in the USA in both animal and man. CWD in deer/elk is spreading rapidly and CWD does transmit to mink, ferret, cattle, and squirrel monkey by intracerebral inoculation. With the known incubation periods in other TSEs, oral transmission studies of CWD may take much longer. Every victim/family of CJD/TSEs should be asked about route and source of this agent. To prolong this will only spread the agent and needlessly expose others. In light of the findings of Asante and Collinge et al, there should be drastic measures to safeguard the medical and surgical arena from sporadic CJDs and all human TSEs. I only ponder how many sporadic CJDs in the USA are type 2 PrPSc?



http://www.neurology.org/cgi/eletters/60/2/176#535



THE PATHOLOGICAL PROTEIN

Hardcover, 304 pages plus photos and illustrations. ISBN 0-387-95508-9

June 2003

BY Philip Yam

CHAPTER 14 LAYING ODDS

Answering critics like Terry Singeltary, who feels that the U.S. under- counts CJD, Schonberger conceded that the current surveillance system has errors but stated that most of the errors will be confined to the older population.



http://www.thepathologicalprotein.com/



Diagnosis and Reporting of Creutzfeldt-Jakob Disease Singeltary, Sr et al. JAMA.2001; 285: 733-734. Vol. 285 No. 6, February 14, 2001 JAMA

Diagnosis and Reporting of Creutzfeldt-Jakob Disease

To the Editor: In their Research Letter, Dr Gibbons and colleagues1 reported that the annual US death rate due to Creutzfeldt-Jakob disease (CJD) has been stable since 1985. These estimates, however, are based only on reported cases, and do not include misdiagnosed or preclinical cases. It seems to me that misdiagnosis alone would drastically change these figures. An unknown number of persons with a diagnosis of Alzheimer disease in fact may have CJD, although only a small number of these patients receive the postmortem examination necessary to make this diagnosis. Furthermore, only a few states have made CJD reportable. Human and animal transmissible spongiform encephalopathies should be reportable nationwide and internationally.

Terry S. Singeltary, Sr Bacliff, Tex

1. Gibbons RV, Holman RC, Belay ED, Schonberger LB. Creutzfeldt-Jakob disease in the United States: 1979-1998. JAMA. 2000;284:2322-2323. FREE FULL TEXT



http://jama.ama-assn.org/cgi/content/extract/285/6/733?maxtoshow=&HITS=10&hits=10&RESULTFORMAT=&fulltext=singeltary&searchid=1&FIRSTINDEX=0&resourcetype=HWCIT



http://jama.ama-assn.org/cgi/content/full/285/6/733?maxtoshow=&HITS=10&hits=10&RESULTFORMAT=&fulltext=singeltary&searchid=1&FIRSTINDEX=0&resourcetype=HWCIT



2 January 2000 British Medical Journal U.S. Scientist should be concerned with a CJD epidemic in the U.S., as well



http://www.bmj.com/cgi/eletters/320/7226/8/b#6117



15 November 1999 British Medical Journal vCJD in the USA * BSE in U.S.



http://www.bmj.com/cgi/eletters/319/7220/1312/b#5406



Creutzfeldt Jakob Disease



http://creutzfeldt-jakob-disease.blogspot.com/



USA PRION UNIT BLOG



http://prionunitusaupdate2008.blogspot.com/



Sunday, April 20, 2008 Progress Report from the National Prion Disease Pathology Surveillance Center April 3, 2008

Atypical forms of BSE have emerged which, although rare, appear to be more virulent than the classical BSE that causes vCJD.

see full text ;



http://prionunitusaupdate2008.blogspot.com/2008/04/progress-report-from-national-prion.html



CJD TEXAS (cjd clusters)



http://cjdtexas.blogspot.com/



USA WRITTEN CJD QUESTIONNAIRE ???



http://cjdquestionnaire.blogspot.com/



The statistical incidence of CJD cases in the United States has been revised to reflect that there is one case per 9000 in adults age 55 and older. Eighty-five percent of the cases are sporadic, meaning there is no known cause at present.



http://www.cjdfoundation.org/fact.html



Attending Dr.: Date / Time Admitted : 12/14/97 1228

UTMB University of Texas Medical Branch Galveston, Texas 77555-0543 (409) 772-1238 Fax (409) 772-5683 Pathology Report

FINAL AUTOPSY DIAGNOSIS Autopsy' Office (409)772-2858

FINAL AUTOPSY DIAGNOSIS

I. Brain: Creutzfeldt-Jakob disease, Heidenhain variant.



http://creutzfeldt-jakob-disease.blogspot.com/2008/07/heidenhain-variant-creutzfeldt-jakob.html





UPDATE


Thursday, December 04, 2008 2:37 PM

"we have found that H-BSE can infect humans."

personal communication with Professor Kong. ...TSS



Terry S. Singeltary Sr. P.O. Box 42 Bacliff, Texas USA 77518

Labels: , , , ,