Wednesday, January 28, 2009

TAFS1 Position Paper on Slaughter Practices and the Dangers of Carcase Contamination with BSE

TAFS POSITION PAPER ON SLAUGHTER PRACTICES AND THE DANGERS OF CARCASE CONTAMINATION WITH BSE (January 09, 2004)

The recognition of BSE in any country generates concerns about the safety of beef. The issues of concern are discussed in this position paper, and indicate that subject to appropriate risk reduction measures beef can be consumed safely in all countries. TAFS Position Paper - Slaughter Practices and the Dangers of Carcase Contaminationwith BSE (157 kB) ?????????BSE ????????? TAFS ?????????

TAFS

INTERNATIONAL FORUM FOR TSE AND FOOD SAFETY a non-profit Swiss Foundation

(January 9, 2004)

TAFS1 Position Paper on Slaughter Practices and the Dangers of Carcase Contamination with BSE

This note focuses specifically on methods currently, or recently, used to slaughter cattle and then to subsequently dress the carcase in preparation for human consumption. It considers the likelihood that the processing can increase risk to consumers of exposure to the BSE agent through consumption of bovine products, and changes to working practices that have been introduced to remove or reduce that risk.

The text relates primarily to practices that are in place in Europe, but can be used for consideration of the risks arising from related procedures in other parts of the world.

Although the document deals with potential risks associated with BSE, there is a need for a balanced approach to the evaluation of risks and the implementation of protective measures in any particular country. The cost of implementation can be massive, and cause severe disruption to slaughterhouses and allied industries. Therefore the extent to which measures are introduced should take into account the real risk to consumers in that country, and the degree of risk reduction offered by the solution(s) chosen.

The note does not address the ethical issues surrounding individual methods. It deals only with BSE related issues, and only with cattle.


How are cattle stunned?



snip...

please see full text ;

http://www.tafsforum.org/position_papers/TAFS_POSITION_PAPER_ON%20SLAUGHTER_.pdf



course tam et al figured this out a long time ago ;

-------- Original Message -------- Subject: Docket #03-025IF -- Docket #03-038IF -- Docket #01-033DF -- SUBMISSIONS -- USDA ISSUES NEW REGULATIONS TO ADDRESS BSE Date: Thu, 08 Jan 2004 15:33:20 -0600 From: "Terry S. Singeltary Sr." To: fdadockets@oc.fda.gov CC: Freas@cber.FDA.gov

Greetings FDA,

I would kindly like to make a submission to Federal Docket Docket #03-025IF -- Docket #03-038IF and Docket #01-033DF -- TSS SUBMISSIONS -- USDA ISSUES NEW REGULATIONS TO ADDRESS BSE

Garland et al (1996). “Brain emboli in the lungs of cattle after stunning,” Lancet 348(9027), p. 610.).

end...tss

see full text ;


https://web01.aphis.usda.gov/regpublic.nsf/0/eff9eff1f7c5cf2b87256ecf000df08d?OpenDocument



The injection of air through the stun bolt has the potential to significantly increase the risk. Occasionally, samples of brain material, visible to the naked eye, have been identified lodged in tissues that receive blood after passing through the heart (usually lodged in lung or occasionally liver).(Garland, et al, 1996; Garland, 1996; Munro, 1997; Taylor, 1996).


http://www.tafsforum.org/position_papers/TAFS_POSITION_PAPER_ON%20SLAUGHTER_.pdf



Wednesday, January 28, 2009

TAFS1 Position Paper on Specified Risk Materials (January, 2009) TAFS INTERNATIONAL FORUM FOR TRANSMISSIBLE ANIMAL DISEASES AND FOOD SAFETY a non-profit Swiss Foundation(January 2009)TAFS1 Position Paper on Specified Risk Materials


http://madcowspontaneousnot.blogspot.com/2009/01/tafs1-position-paper-on-specified-risk.html


TSS

Labels: , , ,

Saturday, January 24, 2009

Bovine Spongiform Encephalopathy h-BSE ATYPICAL USA 2008 Annual Report

Research Project: Study of Atypical Bse

Location: Virus and Prion Diseases of Livestock

2008 Annual Report

1a.Objectives (from AD-416) The objective of this cooperative research project with Dr. Maria Caramelli from the Italian BSE Reference Laboratory in Turin, Italy, is to conduct comparative studies with the U.S. bovine spongiform encephalopathy (BSE) isolate and the atypical BSE isolates identified in Italy. The studies will cover the following areas: 1. Evaluation of present diagnostics tools used in the U.S. for the detection of atypical BSE cases. 2. Molecular comparison of the U.S. BSE isolate and other typical BSE isolates with atypical BSE cases. 3. Studies on transmissibility and tissue distribution of atypical BSE isolates in cattle and other species.

1b.Approach (from AD-416) This project will be done as a Specific Cooperative Agreement with the Italian BSE Reference Laboratory, Istituto Zooprofilattico Sperimentale del Piemonte, in Turin, Italy. It is essential for the U.S. BSE surveillance program to analyze the effectiveness of the U.S diagnostic tools for detection of atypical cases of BSE. Molecular comparisons of the U.S. BSE isolate with atypical BSE isolates will provide further characterization of the U.S. BSE isolate. Transmission studies are already underway using brain homogenates from atypical BSE cases into mice, cattle and sheep. It will be critical to see whether the atypical BSE isolates behave similarly to typical BSE isolates in terms of transmissibility and disease pathogenesis. If transmission occurs, tissue distribution comparisons will be made between cattle infected with the atypical BSE isolate and the U.S. BSE isolate. Differences in tissue distribution could require new regulations regarding specific risk material (SRM) removal.

3.Progress Report The aim of the cooperative research project "Study of atypical BSE" led by CEA (Italian Reference Centre for Animal TSE) and USDA is to compare Italian and U.S. Bovine sponigiform encephalopathy (BSE) confirmatory protocols in the detection of classical (C-) and atypical (H- and L-type) BSE cases. In the course of this project samples of Italian C-BSE and Italian L-type BSE (BASE), both frozen and formalin fixed, have been sent to USDA laboratories in Ames, to undergo Western blot and Immunohstochemical (IHC) comparison studies for PrP**Sc detection according to U.S. and Italian methods. In 2007, the comparative study between U.S. and Italian BSE confirmatory protocols was performed. The collaborator sent a scientist to Ames to assist in performing the Italian IHC protocol on the BSE samples chosen for the study. Results obtained showed that the Italian and U.S. IHC procedures were alike in PrP**Sc detection regarding its distribution, deposition pattern and intensity of staining on all the C-, L- and H-type BSE cases considered. In addition, the U.S. protocol evidenced the characteristic presence of plaques in the frontal cortex of the Italian BASE case similar to the Italian protocol. Methods used for monitoring include email, site visits, and periodic written reports. This project addresses NP 103, component 8.



http://www.ars.usda.gov/research/projects/projects.htm?ACCN_NO=408490&showpars=true&fy=2008



Research Project: Study of Atypical Bse Location: Virus and Prion Diseases of Livestock

Project Number: 3625-32000-086-05 Project Type: Specific Cooperative Agreement

Start Date: Sep 15, 2004 End Date: Sep 14, 2009

Objective: The objective of this cooperative research project with Dr. Maria Caramelli from the Italian BSE Reference Laboratory in Turin, Italy, is to conduct comparative studies with the U.S. bovine spongiform encephalopathy (BSE) isolate and the atypical BSE isolates identified in Italy. The studies will cover the following areas: 1. Evaluation of present diagnostics tools used in the U.S. for the detection of atypical BSE cases. 2. Molecular comparison of the U.S. BSE isolate and other typical BSE isolates with atypical BSE cases. 3. Studies on transmissibility and tissue distribution of atypical BSE isolates in cattle and other species.

Approach: This project will be done as a Specific Cooperative Agreement with the Italian BSE Reference Laboratory, Istituto Zooprofilattico Sperimentale del Piemonte, in Turin, Italy. It is essential for the U.S. BSE surveillance program to analyze the effectiveness of the U.S diagnostic tools for detection of atypical cases of BSE. Molecular comparisons of the U.S. BSE isolate with atypical BSE isolates will provide further characterization of the U.S. BSE isolate. Transmission studies are already underway using brain homogenates from atypical BSE cases into mice, cattle and sheep. It will be critical to see whether the atypical BSE isolates behave similarly to typical BSE isolates in terms of transmissibility and disease pathogenesis. If transmission occurs, tissue distribution comparisons will be made between cattle infected with the atypical BSE isolate and the U.S. BSE isolate. Differences in tissue distribution could require new regulations regarding specific risk material (SRM) removal.



http://www.ars.usda.gov/research/projects/projects.htm?ACCN_NO=408490



Research Project: Study of Atypical Bse Location: Virus and Prion Diseases of Livestock

2007 Annual Report

1a.Objectives (from AD-416) The objective of this cooperative research project with Dr. Maria Caramelli from the Italian BSE Reference Laboratory in Turin, Italy, is to conduct comparative studies with the U.S. bovine spongiform encephalopathy (BSE) isolate and the atypical BSE isolates identified in Italy. The studies will cover the following areas: 1. Evaluation of present diagnostics tools used in the U.S. for the detection of atypical BSE cases. 2. Molecular comparison of the U.S. BSE isolate and other typical BSE isolates with atypical BSE cases. 3. Studies on transmissibility and tissue distribution of atypical BSE isolates in cattle and other species.

1b.Approach (from AD-416) This project will be done as a Specific Cooperative Agreement with the Italian BSE Reference Laboratory, Istituto Zooprofilattico Sperimentale del Piemonte, in Turin, Italy. It is essential for the U.S. BSE surveillance program to analyze the effectiveness of the U.S diagnostic tools for detection of atypical cases of BSE. Molecular comparisons of the U.S. BSE isolate with atypical BSE isolates will provide further characterization of the U.S. BSE isolate. Transmission studies are already underway using brain homogenates from atypical BSE cases into mice, cattle and sheep. It will be critical to see whether the atypical BSE isolates behave similarly to typical BSE isolates in terms of transmissibility and disease pathogenesis. If transmission occurs, tissue distribution comparisons will be made between cattle infected with the atypical BSE isolate and the U.S. BSE isolate. Differences in tissue distribution could require new regulations regarding specific risk material (SRM) removal.

3.Progress Report This report serves to document research conducted under a specific cooperative agreement between ARS and the Italian Reference Centre for Animal TSE (CEA) at the Istituto Zooprofilattico Sperimentale, Turin, Italy. Additional details of research can be found in the report for the parent project 3625-32000-086-00D, Transmission, Differentiation, and Pathobiology of Transmissible Spongiform Encephalopathies. The aim of the cooperative research project conducted by the CEA and ARS is to compare the U.S. bovine spongiform encephalopathy (BSE) isolates and the bovine amyloidotic spongiform encephalopathy isolates (BASE) identified in Italy. The first objective was to determine whether diagnostic methods routinely used by USDA are able to identify the Italian BASE cases. For this purpose, CEA received the immunohistochemistry (IHC) protocol developed by APHIS-USDA. The IHC protocol was reproduced and standardized in the CEA laboratory and will be applied to the Italian BSE and BASE cases. Furthermore, fixed brainstem sections and frozen brainstem material from Italian BSE and BASE cases were sent to ARS for analysis using USDA IHC and Western blot (WB) methods. At present, western blot analyses have been completed, as reported in the scientific reports 2005 and 2006. Since the Ventana NexES IHC Staining System is no longer in production and therefore could not be purchased in Italy, a researcher from our group will be sent to the NVSL laboratories in Ames in order to compare the USDA and Italian IHC methods. During the past year there were regular contacts with the cooperator. These contacts included one site visit and e-mail correspondence to discuss the progress of the project.



http://www.ars.usda.gov/research/projects/projects.htm?ACCN_NO=408490&showpars=true&fy=2007



Research Project: Molecular Method for Prion Strain Analysis Location: Foodborne Contaminants Research

2008 Annual Report

1a.Objectives (from AD-416) The goal of the proposed research is to develop molecular methods to distinguish and thereby analyze different prion strains. If successful, these methods could be used to address the following question: Is the December, 2003 North American BSE case the same strain as the United Kingdom BSE strain, or is it analogous to rare atypical BSE cases such as those seen in Italy and Japan? The UK strain has been linked to feed contaminated with BSE, wheras the atypical cases are hypothesized to be of sporadic origin. The answer to this question has obvious implications for. 1)the scientific basis of regulations that are designed to prevent future BSE cases caused by feed contamination and. 2)the explanation as to the cause of future BSE cases which may still arise despite 100% compliance of feed ban regulations.

1b.Approach (from AD-416) Transmissible spongiform encephalophies (TSEs) affect humans and domesticated animals such as sheep (scrapie) and cattle (BSE). TSEs can be genetic (inherited mutations in the prion gene), infectious (dietary or accidental exposure to prions as in iatrogenic cases or consumption of prion-infected food) or sporadic v.g. sporadic Cruetzfeld-Jacob Disease (CJD).

Prions have properties that are maintained upon transmission from one host to the next, allowing different 'strains' to be distinguished. Strains cause specific phenotypes, such as different symptoms, incubation time, and tissue distribution of PrPSc. Differentiation of strains is of paramount importance: as an example, the strain of sheep PrPSc that causes scrapie is not transmissible to humans, while the strain that causes ovine BSE presumably is. By SDS-PAGE analysis, PrPSc from different strains maintain specific ratios of non-, mono-, and di-glycosylated glycoforms and different size of the proteinase K (PK) resistent core.

However, these methods have significant limitations. Some strains exhibit similar glycoform patterns, and prions of a given strain isolated from different regions of the brain show differences in glycoform patterns, leading to uncertainty. Examination of the molecular weight of PrPSc after proteolysis by SDS-PAGE can only distinguish gross molecular weight differences.

We propose to develop new methods to differentiate prion strains based on mass spectrometric analysis. Specifically, we will use tandem mass spectrometry to identify and quantitate peptides of different molecular weights after treatment of the PK-resistant core with trypsin.

The scope of this work is to provide proof of principle in a well characterized animal model. If sucessful, future effort will focus on adaptation from animal models to BSE. Documents SCA with U. of Compostela Santiago. Formerly 5325-32000-003-02S (5/07). Formerly 5325-32000-007-01S (4/08).

3.Progress Report

The goal of this project is mass spectrometry based methodology for detection Transmissible Spongiform Encephalopathy (TSE) diseases. We are using tandem mass spectrometry to identify and quantitate the peptides resulting from the trypsin digestion of the proteinase K resistant core of the prion molecule. Our method has proven successful using a rodent disease model. We are working to apply this technique to the detect prions in sheep, deer, and cattle.

The ADODR monitors this project through annual visits to cooperator’s lab, meetings with the cooperator at scientific symposia, occasional telephone conversations and frequent email. ADODR and Cooperator regularly co-author peer-reviewed scientific publications.



http://www.ars.usda.gov/research/projects/projects.htm?ACCN_NO=408803&showpars=true&fy=2008



Research Project: Bse Pathogenesis Study Location: Virus and Prion Diseases of Livestock

2008 Annual Report

1a.Objectives (from AD-416) The objective of this cooperative research project is to obtain material from an oral bovine spongiform encephalopathy (BSE) pathogenesis study performed at the Veterinary Laboratories Agency (VLA)-Weybridge in the United Kingdom. These BSE materials will be used to identify PrPd tissue distribution and migration in BSE infected cattle.

1b.Approach (from AD-416) We will obtain various materials from the bovine spongiform encephalophathy (BSE) oral pathogenesis study. These materials will be used to identify PrPd tissue distribution and migration employing validated and non-validated PrPd detecting methods developed at the NADC for use with CWD and scrapie. At necropsy, approximately 80 samples were taken from the animals at various time points post infection. This study also included ante mortem sampling of body fluids like blood, cerebrospinal fluid, urine, saliva, nasal secretions, feces and milk at determined intervals.

3.Progress Report Materials from an oral Bovine spongiform encephalopathy (BSE) pathogenesis study performed at the VLA-Weybridge in the United Kingdom were imported to the NADC for the purpose of identifying PrPres tissue distribution and migration in BSE-infected cattle. Samples include milk, placenta, serum, bone marrow, and frozen and paraffin embedded brain tissues. Technical difficulties with the PMCA assay in our lab have resulted in us suspending our research on these tissues until better techniques become available. Additional funds remain in the agreement and plans are being made to request additional samples from visual system and other tissues that tie in with work currently underway with non-BSE Transmissible spongiform encephelopathies (TSEs) here at the NADC. Methods for monitoring this project are primarily e-mail with periodic phone calls; however, since the remaining research to be conducted is our portion of the SCA, fewer contacts will be needed until such time we begin preparing manuscripts. This project addresses NP 103, component 8.



http://www.ars.usda.gov/research/projects/projects.htm?ACCN_NO=408830&showpars=true&fy=2008




>>>Materials from an oral Bovine spongiform encephalopathy (BSE) pathogenesis study performed at the VLA-Weybridge in the United Kingdom were imported to the NADC for the purpose of identifying PrPres tissue distribution and migration in BSE-infected cattle. Samples include milk, placenta, serum, bone marrow, and frozen and paraffin embedded brain tissues. Technical difficulties with the PMCA assay in our lab have resulted in us suspending our research on these tissues until better techniques become available.<<<


??? same old BSe. ...TSS


3.57 The experiment which might have determined whether BSE and scrapie were caused by the same agent (ie, the feeding of natural scrapie to cattle) was never undertaken in the UK. It was, however, performed in the USA in 1979, when it was shown that cattle inoculated with the scrapie agent endemic in the flock of Suffolk sheep at the United States Department of Agriculture in Mission, Texas, developed a TSE quite unlike BSE.339 The findings of the initial transmission, though not of the clinical or neurohistological examination, were communicated in October 1988 to Dr Watson, Director of the CVL, following a visit by Dr Wrathall, one of the project leaders in the Pathology Department of the CVL, to the United States Department of Agriculture.340 The results were not published at this point, since the attempted transmission to mice from the experimental cow brain had been inconclusive. The results of the clinical and histological differences between scrapie-affected sheep and cattle were published in 1995. Similar studies in which cattle were inoculated intracerebrally with scrapie inocula derived from a number of scrapie-affected sheep of different breeds and from different States, were carried out at the US National Animal Disease Centre.


341 The results, published in 1994, showed that this source of scrapie agent, though pathogenic for cattle, *** did not produce the same clinical signs of brain lesions characteristic of BSE. ***


3.58 There are several possible reasons why the experiment was not performed in the UK. It had been recommended by Sir Richard Southwood (Chairman of the Working Party on Bovine Spongiform Encephalopathy) in his letter to the Permanent Secretary of MAFF, Mr (now Sir) Derek Andrews, on 21 June 1988,342 though it was not specifically recommended in the Working Party Report or indeed in the Tyrrell Committee Report (details of the Southwood Working Party and the Tyrell Committee can be found in vol. 4: The Southwood Working Party, 1988-89 and vol. 11: Scientists after Southwood respectively). The direct inoculation of scrapie into calves was given low priority, because of its high cost and because it was known that it had already taken place in the USA.343 It was also felt that the results of such an experiment would be hard to interpret. While a negative result 337



Fraser, H., Bruce, M., Chree, A., McConnell, I. and Wells, G. (1992) Transmission of Bovine Spongiform Encephalopathy and Scrapie to Mice, Journal of General Virology, 73, 1891-7; Bruce, M., Chree, A., McConnell, I., Foster, J., Pearson, G. and Fraser, H. (1994) Transmission of Bovine Spongiform Encephalopathy and Scrapie to Mice: Strain Variation and the Species Barrier, Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 343, 405-11 338 Bruce, M., Will, R., Ironside, J., McConell, I., Drummond, D., Suttie, A., McCordie, L., Chree, A., Hope, J., Birkett, C., Cousens, S., Fraser, H. and Bostock, C. (1997) Transmissions to Mice Indicate that 'New Variant' CJD is Caused by the BSE Agent, Nature, 389, 498-501 339 Clark, W., Hourrigan, J. and Hadlow, W. (1995) Encephalopathy in Cattle Experimentally Infected with the Scrapie Agent, American Journal of Veterinary Research, 56, 606-12 340 YB88/10.00/1.1 341 Cutlip, R., Miller, J., Race, R., Jenny, A., Katz, J., Lehmkuhl, H., Debey, B. and Robinson, M. (1994) Intracerebral Transmission of Scrapie to Cattle, Journal of Infectious Diseases, 169, 814-20 342 YB88/6.21/1.2 343 YB88/11.17/2.4 SCIENCE 84


would be informative, a positive result would need to demonstrate that when scrapie was transmitted to cattle, the disease which developed in cattle was the same as BSE.344 Given the large number of strains of scrapie and the possibility that BSE was one of them, it would be necessary to transmit every scrapie strain to cattle separately, to test the hypothesis properly. Such an experiment would be expensive. Secondly, as measures to control the epidemic took hold, the need for the experiment from the policy viewpoint was not considered so urgent. It was felt that the results would be mainly of academic interest.345 3.59 Nevertheless, from the first demonstration of transmissibility of BSE in 1988, the possibility of differences in the transmission properties of BSE and scrapie was clear. Scrapie was transmissible to hamsters, but by 1988 attempts to transmit BSE to hamsters had failed. Subsequent findings increased that possibility.


http://www.bseinquiry.gov.uk/pdf/volume2/chapter3.pdf



http://www.regulations.gov/fdmspublic/ContentViewer?objectId=09000064801f8152&disposition=attachment&contentType=msw8




IN CONFIDENCE PERCEPTION OF UNCONVENTENTIONAL SLOW VIRUS DISEASES OF ANIMALS IN THE USA 1985 The Stetsonville outbreak (farmer's name: Brecke). In addition to the downer cows and horses Brecke's mink recieved a cereal supplement. Hartsough's view was that this would contain bone meal and would be from a commercial source. If this were so and it was contaminated with a TME agent why were no other ranches affected? Many mink ranches now feed a commerical pelleted diet. Brecke was equipped to process LARGE CARCASSES USING A CRUSHER/MIXER WHICH COULD ACCOMMODATE A WHOLE COW!

snip...

Wilbur Clarke (reference the Mission, Texas scrapie transmission transmission to cattle study) is now the State Veterinarian for Montana based at Helena. I was given confidential access to sections from the Clarke scrapie-cattle transmission experiment. Details of the experimental design were as supplied previously by Dr. Wrathall (copy of relevant information appended). Only 3 animals (2 inoculated with 2nd pass Suffolk scrapie and 1 inoculated with Angora goat passaged scrapie) showed clinical signs. Clinical signs were characterised by weakness, ''a stilted hindlimb gait'', disorientation, ataxia and, terminally, lateral recumbency. The two cattle from which I examined material were inocluated at 8 months of age and developed signs 36 months pi (goat scrapie inoculum) and 49 months pi (one of the Suffolk scrapie inoculated) respectively. This latter animal was killed at 58 months of age and so the clinical duration was only 1 month. The neuropathology was somewhat different from BSE or the Stetsonville TME in cattle. Vacuolar changes were minimal, to the extent that detection REQUIRED CAREFUL SEARCHING. Conversely astrocyte hypertrophy was a widespread and prominent feature. The material requires DETAILED NEUROPATHOLOGICAL ASSESSMENT BUT WHETHER OR NOT THIS WILL BE DONE REMAINS A QUESTION.

snip...

were there extensive neurologic lesions, which are primary for BSE, such as severe vacuolation of neurons and neuropil or neuronal necrosis and gliosis. Although some vacuolation of neuropil, chromotolysis in neurons, and gliosis were seen in the brains of some affected calves, these were industinguishable from those of controls. Vacuolated neurons in the red nucleus of both challenged and normal calves were considered normal for the bovines as previously described (50). PrP-res was found in ALL CHALLENGED CALVES REGARDLESS OF CLINCIAL SIGNS, and the amount of PrP-res positively related to the length of the incubation. ...

snip...

WE also conclude from these studies that scrapie in cattle MIGHT NOT BE RECOGNIZED BY ROUTINE HISTOPATHOLOGICAL EXAMINATION OF THE BRAIN AND SUGGEST THAT DETECTION OF PrP-res by immunohistochemistry or immunoblotting is necessary to make a definitive diagnosis. THUS, undiagnosed scrapie infection could contribute to the ''DOWNER-COW'' syndrome and could be responsible for some outbreaks of transmissible mink encephalopathy proposed by Burger and Hartsough (8) and Marsh and harsough (52). ...

snip...

Multiple sources of sheep affected with scrapie and two breeds of cattle from several sources were used inthe current study in an effort to avoid a single strain of either agent or host. Preliminary results from mouse inoculations indicate multiple strains of the agent were present in the pooled inoculum (unpublished data). ...

Transmission of the sheep scrapie to cattle was attempted in 1979 by using intracerebral, intramuscular, subcutaneous, and oral routes of inoculation of 5, 8- to 11-month old cattlw with a homologous mixture of brain from 1 affected sheep (61, 62). ONE of the 5 cattle develped neurologic signs 48 months after inoculation. Signs were disorientation, incoordination, a stiff-legged stilted gait, progressive difficulty in rising, and finally in terminal recumbency. The clinical course was 2.5 months. TWO of the 5 cattle similarly inoculated with brain tissue from a goat with scrapie exhibited similar signs 27 and 36 months after incoluation. Clinical courses were 43 an 44 days. Brain lesions of mild gliosis and vacuolation and mouse inoculation data were insufficient to confirm a diagnosis of scrapie. This work remained controversial until recent examination of the brains detected PrP-res in all 3 cattle with neurologic disease but in none of the unaffected cattle (62). Results of these studies are similar to ours and underscore the necessity of methods other than histopathology to diagnose scrapie infection in cattle. We believe that immunologic techniques for detecting PrP-res currently provide the most sensitive and reliable way to make a definitive diagnosis...



http://www.bseinquiry.gov.uk/files/sc/seac17/tab03.pdf



Visit to USA ... info on BSE and Scrapie



http://www.bseinquiry.gov.uk/files/yb/1988/10/00001001.pdf



http://www.ngpc.state.ne.us/cgi-bin/ultimatebb.cgi?ubb=get_topic;f=12;t=000385



12/10/76 AGRICULTURAL RESEARCH COUNCIL REPORT OF THE ADVISORY COMMITTE ON SCRAPIE

Office Note CHAIRMAN: PROFESSOR PETER WILDY

snip...

A The Present Position with respect to Scrapie A] The Problem Scrapie is a natural disease of sheep and goats. It is a slow and inexorably progressive degenerative disorder of the nervous system and it ia fatal. It is enzootic in the United Kingdom but not in all countries. The field problem has been reviewed by a MAFF working group (ARC 35/77). It is difficult to assess the incidence in Britain for a variety of reasons but the disease causes serious financial loss; it is estimated that it cost Swaledale breeders alone $l.7 M during the five years 1971-1975. A further inestimable loss arises from the closure of certain export markets, in particular those of the United States, to British sheep. 9/13/2005 Page 17 of 17 It is clear that scrapie in sheep is important commercially and for that reason alone effective measures to control it should be devised as quickly as possible. Recently the question has again been brought up as to whether scrapie is transmissible to man. This has followed reports that the disease has been transmitted to primates. One particularly lurid speculation (Gajdusek 1977) conjectures that the agents of scrapie, kuru, Creutzfeldt-Jakob disease and transmissible encephalopathy of mink are varieties of a single "virus". The U.S. Department of Agriculture concluded that it could "no longer justify or permit scrapie-blood line and scrapie-exposed sheep and goats to be processed for human or animal food at slaughter or rendering plants" (ARC 84/77)" The problem is emphasised by the finding that some strains of scrapie produce lesions identical to the once which characterise the human dementias" Whether true or not. the hypothesis that these agents might be transmissible to man raises two considerations. First, the safety of laboratory personnel requires prompt attention. Second, action such as the "scorched meat" policy of USDA makes the solution of the acrapie problem urgent if the sheep industry is not to suffer grievously.

snip... 76/10.12/4.6


http://www.bseinquiry.gov.uk/files/yb/1976/10/12004001.pdf



THE infamous USA SPORADIC CJDs, something to ponder; IF the USA TSE in cattle all does not look like UK BSE, why would all USA human TSE look like UK nvCJD??? over 20 strains of scrapie documented to date with new atypical strains now being documented in sheep and goat i.e. BSE. atypical strains of BSE/TSE showing up in cattle in different countries? ALL animals for human/animal consumption must be tested for TSE. ALL human TSEs must be made reportable Nationally and Internationally, OF ALL AGES... IN a time when FSIS/APHIS/USDA/FDA et al should be strengthening the TSE regulations, it seems corporate interest has won out again over sound science and consumer protection from an agent that is 100% fatal for the ones that go clinical. With the many different atypical TSEs showing up in different parts of the world, and with GWs BSE MRR policy (the legal policy of trading all strains of TSEs), the battle that has waged for the last 25 years to eradicate this agent from this planet will be set back decades, if not lost for good. ...

Terry S. Singeltary Sr. P.O. Box 42 Bacliff, Texas USA 77518



http://www.fsis.usda.gov/oppde/comments/03-025ifa/03-025ifa-2.pdf



Over the next 8-10 weeks, approximately 40% of all the adult mink on the farm died from TME. Since previous incidences of TME were associated with common or shared feeding practices, we obtained a careful history of feed ingredients used over the past 12-18 months. ***The rancher was a “dead stock” feeder using mostly (>95%) downer or dead dairy cattle and a few horses. Sheep had never been fed.***

snip...end



http://www.bseinquiry.gov.uk/files/mb/m09/tab05.pdf



Epidemiology Epidemiologic studies suggest that animals contract the disease by external exposure to the infectious agent, such as by eating contaminated feed. No evidence suggests that the TME agent spreads by contact between unrelated mink or from mother to nursing young. The disease has been identified in both genders and all color phases in animals greater than 1 year old. The first documented TME outbreak in the United States occurred in 1947 on one ranch in Wisconsin and then on a ranch in Minnesota that had received mink from the Wisconsin ranch. In 1961, TME outbreaks occurred on five ranches in Wisconsin. In Factsheet Veterinary Services February 2002 APHIS 1963, outbreaks occurred in Idaho, Minnesota, and Wisconsin. Epidemiologic data from the Minnesota and Wisconsin outbreaks trace the cases in those States to one common purchased food source.

snip...

The 1985 Stetsonville Outbreak The most recent TME outbreak occurred on one mink ranch in Stetsonville, WI, in 1985. In the herd of 7,300 adult mink, 60 percent of the animals died. Clinical signs included tail arching, incoordination, and hyperexcitability. At the most advanced stages of the disease, the animals were in trancelike states and eventually died. The outbreak lasted 5 months. Microscopic examination of sections of the brain confirmed the spongelike changes characteristic of TME. Diagnostic tests identified the prion protein. The following year, mink born during the outbreak showed no signs of TME. The late Richard Marsh, a veterinary virologist at the University of Wisconsin who studied the transmission of TME and other TSE’s, investigated this outbreak. Marsh learned that the mink were fed a diet composed of fresh meat products from “downer cattle” and commercial sources of fish, poultry, and cereal. Downer cattle are nonambulatory and cannot rise because they are affected with a condition such as a metabolic disease, broken limbs, or a central nervous system disorder. Marsh theorized that the meat from these downer cattle introduced a TSE agent to the mink in which TME resulted. Although Marsh’s hypothesis is based on speculation and anecdotal evidence, in 1993 APHIS adjusted its national BSE surveillance program to include testing downer cattle for evidence of a TSE. The brains of more than 20,141 cattle have been examined at APHIS’ National Veterinary Services Laboratories and other State diagnostic laboratories. Not a single tissue sample has revealed evidence of BSE or another TSE in cattle.



http://www.aphis.usda.gov/publications/animal_health/content/printable_version/fs_ahtme.pdf



AND as everyone knows, the rest is history, those dead-stock downers, the most high risk cattle, were NOT tested, and in FACT, was a major source of YOUR CHILDRENS SCHOOL LUNCH PROGRAM, all across the Nation. sorry, these are the most high risk cattle for TSE aka mad cow disease, and i am a bit touchy about this topic. ...sorry. ...terry

DOWNER COW SCHOOL LUNCH PROGRAM



http://downercattle.blogspot.com/



Sunday, December 28,

2008 MAD COW DISEASE USA DECEMBER 28, 2008 an 8 year review of a failed and flawed policy



http://bse-atypical.blogspot.com/2008/12/mad-cow-disease-usa-december-28-2008-8.html



Friday, August 29, 2008

CREEKSTONE VS USDA COURT OF APPEALS, BUSH SAYS, NO WAY, NO HOW



http://madcowtesting.blogspot.com/2008/08/creekstone-vs-usda-court-of-appeals.html



Wednesday, August 20, 2008

Bovine Spongiform Encephalopathy Mad Cow Disease typical and atypical strains, was there a cover-up ?



http://bse-atypical.blogspot.com/2008/08/bovine-spongiform-encephalopathy-mad.html



Sunday, March 16, 2008

MAD COW DISEASE terminology UK c-BSE (typical), atypical BSE H or L, and or Italian L-BASE



http://bse-atypical.blogspot.com/2008/03/mad-cow-disease-terminology-uk-c-bse.html



November 25, 2008

Update On Feed Enforcement Activities To Limit The Spread Of BSE



http://madcowfeed.blogspot.com/2008/11/november-2008-update-on-feed.html



"the biochemical signature of PrPres in the BASE-inoculated animal was found to have a higher proteinase K sensitivity of the octa-repeat region. We found the same biochemical signature in three of four human patients with sporadic CJD and an MM type 2 PrP genotype who lived in the same country as the infected bovine." ...

interesting. ... TSS

Thursday, June 05, 2008

Review on the epidemiology and dynamics of BSE epidemics

Vet. Res. (2008) 39:15 www.vetres.org DOI: 10.1051/vetres:2007053 c INRA, EDP Sciences, 2008 Review article

snip...

And last but not least, similarities of PrPres between Htype BSE and human prion diseases like CJD or GSS have been put forward [10], as well as between L-type BSE and CJD [17]. These findings raise questions about the origin and inter species transmission of these prion diseases that were discovered through the BSE active surveillance.

snip...

Cases of atypical BSE have only been found in countries having implemented large active surveillance programs. As of 1st September 2007, 36 cases (16 H, 20 L) have been described all over the world in cattle: Belgium (1 L) [23], Canada (1 H)15, Denmark (1 L)16, France (8 H, 6 L)17, Germany (1 H, 1 L) [13], Italy (3 L)18, Japan (1 L) [71], Netherlands (1 H, 2 L)19, Poland (1 H, 6 L)20, Sweden (1 H)21, United Kingdom (1 H)22, and USA (2 H)23. Another H-type case has been found in a 19 year old miniature zebu in a zoological park in Switzerland [56]. It is noteworthy that atypical cases have been found in countries that did not experience classical BSE so far, like Sweden, or in which only few cases of classical BSE have been found, like Canada or the USA.

And last but not least, similarities of PrPres between Htype BSE and human prion diseases like CJD or GSS have been put forward [10], as well as between L-type BSE and CJD [17]. These findings raise questions about the origin and inter species transmission of these prion diseases that were discovered through the BSE active surveillance.

full text 18 pages ;



http://www.vetres.org/index.php?option=article&access=standard&Itemid=129&url=/articles/vetres/pdf/2008/04/v07232.pdf



snip...



http://bse-atypical.blogspot.com/2008/06/review-on-epidemiology-and-dynamics-of.html



please see full text ;

Monday, December 22, 2008 [Docket No. FDA-2008-D-0597] Draft Guidance for Industry: Small Entities Compliance Guide for Renderers-Substances Prohibited From Use in Animal Food



http://madcowfeed.blogspot.com/2008/12/docket-no-fda2008d0597-draft-guidance.html



Tuesday, November 11, 2008

Transmission of atypical bovine prions to mice transgenic for human prion protein

DOI: 10.3201/eid1412.080941



http://bse-atypical.blogspot.com/2008/11/transmission-of-atypical-bovine-prions.html



Tuesday, June 3, 2008

SCRAPIE USA UPDATE JUNE 2008 NOR-98 REPORTED PA



http://nor-98.blogspot.com/2008/06/scrapie-usa-update-june-2008-nor-98.html



SCRAPIE USA



http://scrapie-usa.blogspot.com/



Sunday, September 07, 2008

CWD LIVE TEST, and the political aspects or fallout of live testing for BSE in cattle in the USA



http://chronic-wasting-disease.blogspot.com/2008/09/cwd-live-test-and-political-aspects-or.html



Manuscript Draft Manuscript Number: Title: HUMAN and ANIMAL TSE Classifications i.e. mad cow disease and the UKBSEnvCJD only theory Article Type: Personal View Corresponding Author: Mr. Terry S. Singeltary, Corresponding Author's Institution: na First Author: Terry S Singeltary, none Order of Authors: Terry S Singeltary, none; Terry S. Singeltary Abstract: TSEs have been rampant in the USA for decades in many species, and they all have been rendered and fed back to animals for human/animal consumption. I propose that the current diagnostic criteria for human TSEs only enhances and helps the spreading of human TSE from the continued belief of the UKBSEnvCJD only theory in 2007.



http://www.regulations.gov/fdmspublic/ContentViewer?objectId=090000648027c28e&disposition=attachment&contentType=pdf



THE last two mad cows documented in the USA were in Alabama and Texas, both of which were atypical h-BSE.

SINGE then, the surveillance for TSE in cattle in the USA has been reduced to a number of which detecting any TSE would almost impossible.

Brown, who is preparing a scientific paper based on the latest two mad cow cases to estimate the maximum number of infected cows that occurred in the United States, said he has "absolutely no confidence in USDA tests before one year ago" because of the agency's reluctance to retest the Texas cow that initially tested positive.

USDA officials finally retested the cow and confirmed it was infected seven months later, but only at the insistence of the agency's inspector general.

"Everything they did on the Texas cow makes everything USDA did before 2005 suspect," Brown said. ...snip...end



http://www.upi.com/ConsumerHealthDaily/view.php?StoryID=20060315-055557-1284r



In this context, a word is in order about the US testing program. After the discovery of the first (imported) cow in 2003, the magnitude of testing was much increased, reaching a level of >400,000 tests in 2005 (Figure 4). Neither of the 2 more recently indigenously infected older animals with nonspecific clinical features would have been detected without such testing, and neither would have been identified as atypical without confirmatory Western blots. Despite these facts, surveillance has now been decimated to 40,000 annual tests (USDA news release no. 0255.06, July 20, 2006) and invites the accusation that the United States will never know the true status of its involvement with BSE.

In short, a great deal of further work will need to be done before the phenotypic features and prevalence of atypical BSE are understood. More than a single strain may have been present from the beginning of the epidemic, but this possibility has been overlooked by virtue of the absence of widespread Western blot confirmatory testing of positive screening test results; or these new phenotypes may be found, at least in part, to result from infections at an older age by a typical BSE agent, rather than neonatal infections with new "strains" of BSE. Neither alternative has yet been investigated.



http://www.cdc.gov/ncidod/EID/vol12no12/06-0965.htm



A New Prionopathy OR more of the same old BSe and sporadic CJD



http://creutzfeldt-jakob-disease.blogspot.com/2008/08/new-prionopathy-or-more-of-same-old-bse.html



Communicated by: Terry S. Singeltary Sr.

[In submitting these data, Terry S. Singeltary Sr. draws attention to the steady increase in the "type unknown" category, which, according to their definition, comprises cases in which vCJD could be excluded. The total of 26 cases for the current year (2007) is disturbing, possibly symptomatic of the circulation of novel agents. Characterization of these agents should be given a high priority. - Mod.CP]



http://pro-med.blogspot.com/2007/11/proahedr-prion-disease-update-2007-07.html



http://www.promedmail.org/pls/askus/f?p=2400:1001:6833194127530602005::NO::F2400_P1001_BACK_PAGE,F2400_P1001_PUB_MAIL_ID:1010,39963



There is a growing number of human CJD cases, and they were presented last week in San Francisco by Luigi Gambatti(?) from his CJD surveillance collection.

He estimates that it may be up to 14 or 15 persons which display selectively SPRPSC and practically no detected RPRPSC proteins.



http://www.fda.gov/ohrms/dockets/ac/06/transcripts/1006-4240t1.htm


http://www.fda.gov/ohrms/dockets/ac/06/transcripts/2006-4240t1.pdf



sporadic Fatal Familial Insomnia



http://sporadicffi.blogspot.com/



JOURNAL OF NEUROLOGY

MARCH 26, 2003

RE-Monitoring the occurrence of emerging forms of Creutzfeldt-Jakob

disease in the United States

Email Terry S. Singeltary:

mhtml:%7B33B38F65-8D2E-434D-8F9B-8BDCD77D3066%7Dmid://00000250/!x-usc:mailto:flounder@wt.net

I lost my mother to hvCJD (Heidenhain Variant CJD). I would like to comment on the CDC's attempts to monitor the occurrence of emerging forms of CJD. Asante, Collinge et al [1] have reported that BSE transmission to the 129-methionine genotype can lead to an alternate phenotype that is indistinguishable from type 2 PrPSc, the commonest sporadic CJD. However, CJD and all human TSEs are not reportable nationally. CJD and all human TSEs must be made reportable in every state and internationally. I hope that the CDC does not continue to expect us to still believe that the 85%+ of all CJD cases which are sporadic are all spontaneous, without route/source. We have many TSEs in the USA in both animal and man. CWD in deer/elk is spreading rapidly and CWD does transmit to mink, ferret, cattle, and squirrel monkey by intracerebral inoculation. With the known incubation periods in other TSEs, oral transmission studies of CWD may take much longer. Every victim/family of CJD/TSEs should be asked about route and source of this agent. To prolong this will only spread the agent and needlessly expose others. In light of the findings of Asante and Collinge et al, there should be drastic measures to safeguard the medical and surgical arena from sporadic CJDs and all human TSEs. I only ponder how many sporadic CJDs in the USA are type 2 PrPSc?



http://www.neurology.org/cgi/eletters/60/2/176#535



THE PATHOLOGICAL PROTEIN

Hardcover, 304 pages plus photos and illustrations. ISBN 0-387-95508-9

June 2003

BY Philip Yam

CHAPTER 14 LAYING ODDS

Answering critics like Terry Singeltary, who feels that the U.S. under- counts CJD, Schonberger conceded that the current surveillance system has errors but stated that most of the errors will be confined to the older population.



http://www.thepathologicalprotein.com/



Diagnosis and Reporting of Creutzfeldt-Jakob Disease Singeltary, Sr et al. JAMA.2001; 285: 733-734. Vol. 285 No. 6, February 14, 2001 JAMA

Diagnosis and Reporting of Creutzfeldt-Jakob Disease

To the Editor: In their Research Letter, Dr Gibbons and colleagues1 reported that the annual US death rate due to Creutzfeldt-Jakob disease (CJD) has been stable since 1985. These estimates, however, are based only on reported cases, and do not include misdiagnosed or preclinical cases. It seems to me that misdiagnosis alone would drastically change these figures. An unknown number of persons with a diagnosis of Alzheimer disease in fact may have CJD, although only a small number of these patients receive the postmortem examination necessary to make this diagnosis. Furthermore, only a few states have made CJD reportable. Human and animal transmissible spongiform encephalopathies should be reportable nationwide and internationally.

Terry S. Singeltary, Sr Bacliff, Tex

1. Gibbons RV, Holman RC, Belay ED, Schonberger LB. Creutzfeldt-Jakob disease in the United States: 1979-1998. JAMA. 2000;284:2322-2323. FREE FULL TEXT



http://jama.ama-assn.org/cgi/content/extract/285/6/733?maxtoshow=&HITS=10&hits=10&RESULTFORMAT=&fulltext=singeltary&searchid=1&FIRSTINDEX=0&resourcetype=HWCIT



http://jama.ama-assn.org/cgi/content/full/285/6/733?maxtoshow=&HITS=10&hits=10&RESULTFORMAT=&fulltext=singeltary&searchid=1&FIRSTINDEX=0&resourcetype=HWCIT



2 January 2000 British Medical Journal U.S. Scientist should be concerned with a CJD epidemic in the U.S., as well



http://www.bmj.com/cgi/eletters/320/7226/8/b#6117



15 November 1999 British Medical Journal vCJD in the USA * BSE in U.S.



http://www.bmj.com/cgi/eletters/319/7220/1312/b#5406



Creutzfeldt Jakob Disease



http://creutzfeldt-jakob-disease.blogspot.com/



USA PRION UNIT BLOG



http://prionunitusaupdate2008.blogspot.com/



Sunday, April 20, 2008 Progress Report from the National Prion Disease Pathology Surveillance Center April 3, 2008

Atypical forms of BSE have emerged which, although rare, appear to be more virulent than the classical BSE that causes vCJD.

see full text ;



http://prionunitusaupdate2008.blogspot.com/2008/04/progress-report-from-national-prion.html



CJD TEXAS (cjd clusters)



http://cjdtexas.blogspot.com/



USA WRITTEN CJD QUESTIONNAIRE ???



http://cjdquestionnaire.blogspot.com/



The statistical incidence of CJD cases in the United States has been revised to reflect that there is one case per 9000 in adults age 55 and older. Eighty-five percent of the cases are sporadic, meaning there is no known cause at present.



http://www.cjdfoundation.org/fact.html



Attending Dr.: Date / Time Admitted : 12/14/97 1228

UTMB University of Texas Medical Branch Galveston, Texas 77555-0543 (409) 772-1238 Fax (409) 772-5683 Pathology Report

FINAL AUTOPSY DIAGNOSIS Autopsy' Office (409)772-2858

FINAL AUTOPSY DIAGNOSIS

I. Brain: Creutzfeldt-Jakob disease, Heidenhain variant.



http://creutzfeldt-jakob-disease.blogspot.com/2008/07/heidenhain-variant-creutzfeldt-jakob.html





UPDATE


Thursday, December 04, 2008 2:37 PM

"we have found that H-BSE can infect humans."

personal communication with Professor Kong. ...TSS



Terry S. Singeltary Sr. P.O. Box 42 Bacliff, Texas USA 77518

Labels: , , , ,

Research Project: Detection of TSE Agents in Livestock, Wildlife, Agricultural Products, and the Environment Location: 2008 Annual Report

Research Project: Detection of Transmissible Spongiform Encephalopathy Agents in Livestock, Wildlife, Agricultural Products, and the Environment Location: Foodborne Contaminants Research

2008 Annual Report

1a.Objectives (from AD-416) We will develop highly sensitive diagnostic tests to detect transmissible spongiform encephalopathy (TSE) in livestock and wildlife animal species prior to the onset of clinical disease. We will also develop tests to confirm the presence or absence of TSE disease agents in ingredients of animal origin and decontaminated environments.

1b.Approach (from AD-416) The threat of BSE continues to affect export economics for US meat. Meanwhile scrapie continues to influence sheep profits and herd biosecurity, and CWD is spreading throughout North America. Thus U.S. animal industry stakeholders have identified detection of the TSE infectious agent (prions) as a priority biosecurity research issue essential for prevention of TSE diseases. We will build on our previous successes using mass spectrometry (MS) for high-sensitivity and specificity in detection of PrPsc as a marker for TSE infectivity in blood using a hamster scrapie model. We will also develop a novel PrP-null mouse strain and related myeloma cell culture system for production of monoclonal antibodies (MAb), which may be specific for PrPsc. We will then choose MS or MAb and validate our novel diagnostic for preclinical diagnosis of scrapie in sheep blood. Whereas MS and MAb methods rely on dissolved samples, contamination of agricultural products and environmental surfaces is associated with solid samples. So we will produce a cell culture based assay for TSE infectivity that is surface-adsorbed. After using the relatively convenient hamster model for early development, we will validate this technology for detection of scrapie in sheep brain on meat-and-bone meal and stainless steel. Replacing 5325-32000-007-00D (3/19/2008).

3.Progress Report At this point in the Project, in general, we are completing preliminary studies using our relatively convenient hamster and mouse models, and are starting to work with more agriculturally relevant sheep and deer tissues. We are finding the cervid tissues quite different from rodent tissues, in their requirements for sample workup (e.g., amount and quality of lipid and fiber) and in their expression of TSE infectivity and presence of markers. OSQR required us to establish a new collaboration with a reputable cell biologist, to assist with our cell-based scrapie assay. We now have a new MTA with Dr. Charles Weissmann (Scripps), under which we are sharing cell lines and laboratory protocols. We have completed one part of our speed congenics project to develop PrP-null (disease-resistant) mice for use in antibody generation. After conceiving a new procedure for immunogen enrichment, we performed experimental vaccination of these animals in our facilities. This project relates to NP103 Component 8: Prevention and control of transmissible spongiform encephalopathies. Problem statement 9A: Scrapie; 9B Chronic Wasting Disease (CWD); and 9C: Bovine Spongiform Encephalopathy (BSE).

4.Accomplishments 1. Proteinase K-free method for preparation of samples facilitates TSE blood assay.

The most widely used and regulatory approved methods for detection of Transmissible Spongiform Encephalopathy (TSE) contain a step in which the sample is subjected to digestion by a very strong enzyme, proteinase K, which degrades almost all proteins in the sample except for an Infectious isoform of the normal cellular prion protein, a prion (PrPsc). Although PrPsc has served well as a marker for brain disease, infectivity in the blood is mostly not proteinase K resistant. The proteinase K-free technique developed by ARS scientists in the Foodborne Contaminants Research Unit in Albany, CA will allow scientists to detect infectivity in blood. These efforts will lead to diagnostic tests that will save farmers and ranchers money and resources by allowing them to identify infected animals prior to purchase, sale or slaughter, and keep TSE-infected animals out of the US food supply. This accomplishment addresses NP103 Component 8: Prevention and Control of Transmissible Spongiform Encephalopathies; Problem Statement 9A: Scrapie; 9B: Chronic Wasting Disease (CWD); and 9C: Bovine Spongiform Encephalopathy (BSE).

2. Demonstrated conversion of a non-infectious normal cellular prion protein (PrP) into disease isoform in cell culture.

Although Transmissible Spongiform Encephalopathy (TSE) infectivity can be detected using animal models and mass spectroscopy, a cell culture system offers increased speed and throughput. ARS scientists in the Foodborne Contaminants Research Unit in Albany, CA developed conditions for growth and infection of existing cell cultures and cultures expressing transgenic PrP genes, observing conversion to the disease-associated PrPsc isoform. This method will be further developed to detect infectivity that is adsorbed onto surfaces, such as stainless steel and soil. These efforts will lead to diagnostic tests that will save farmers and ranchers money and resources by allowing them to identify infected areas and equipment before these areas or items can infect their animals. This accomplishment addresses NP103 Component 8: Prevention and Control of Transmissible Spongiform Encephalopathies; Problem Statement 9A: Scrapie; 9B: Chronic Wasting Disease (CWD); and 9C: Bovine Spongiform Encephalopathy (BSE).

5.Significant Activities that Support Special Target Populations None.

6.Technology Transfer Number of New Commercial Licenses Executed 1

Review Publications Bruederle, C.E., Hnasko, R.M., Kraemer, T., Garcia, R.A., Haas, M.J., Marmer, W.N., Carter, J.M. 2008. Prion infected Meat-and-Bone Meal is still infectious after biodiesel production. PLoS Pathogens. Available:


http://dx.plos.org/10.1371/journal.pone.0002969



Onisko, B.C., Chen, N., Napoli, J. 2008. The Nuclear Transcription Factor RAR Associates with Neuronal RNA Granules and Suppresses Translation. Journal of Biological Chemistry. 283(30):20841-20847.

Sajnani, G., Pastrana, M.A., Dynin, I.A., Onisko, B.C., Requena, J.R. 2008. Insights on scrapie prion protein (prpsc) structure obtained by limited proteolysis and mass spectrometry. Journal of Molecular Biology. 382(2008):88-98.



http://www.ars.usda.gov/research/projects/projects.htm?ACCN_NO=413072&showpars=true&fy=2008



FY2006: Tests for prion contamination in soil and water will be developed.



http://www.ars.usda.gov/research/projects/projects.htm?ACCN_NO=405202&showpars=true&fy=2003



???

Scrapie Agent (Strain 263K) Can Transmit Disease via the Oral Route after Persistence in Soil over Years Bjoern Seidel1#*, Achim Thomzig2#, Anne Buschmann3#, Martin H. Groschup3, Rainer Peters1, Michael Beekes2, Konstantin Terytze4

1 Fraunhofer Institute for Molecular Biology und Applied Ecology (IME), Schmallenberg, Germany, 2 P24 -Transmissible Spongiform Encephalopathies, Robert Koch-Institut, Berlin, Germany, 3 Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Insel Riems, Germany, 4 German Federal Environmental Agency (Umweltbundesamt, UBA), Dessau, Germany

Abstract The persistence of infectious biomolecules in soil constitutes a substantial challenge. This holds particularly true with respect to prions, the causative agents of transmissible spongiform encephalopathies (TSEs) such as scrapie, bovine spongiform encephalopathy (BSE), or chronic wasting disease (CWD). Various studies have indicated that prions are able to persist in soil for years without losing their pathogenic activity. Dissemination of prions into the environment can occur from several sources, e.g., infectious placenta or amniotic fluid of sheep. Furthermore, environmental contamination by saliva, excrements or non-sterilized agricultural organic fertilizer is conceivable. Natural transmission of scrapie in the field seems to occur via the alimentary tract in the majority of cases, and scrapie-free sheep flocks can become infected on pastures where outbreaks of scrapie had been observed before. These findings point to a sustained contagion in the environment, and notably the soil. By using outdoor lysimeters, we simulated a contamination of standard soil with hamster-adapted 263K scrapie prions, and analyzed the presence and biological activity of the soil-associated PrPSc and infectivity by Western blotting and hamster bioassay, respectively. Our results showed that 263K scrapie agent can persist in soil at least over 29 months. Strikingly, not only the contaminated soil itself retained high levels of infectivity, as evidenced by oral administration to Syrian hamsters, but also feeding of aqueous soil extracts was able to induce disease in the reporter animals. We could also demonstrate that PrPSc in soil, extracted after 21 months, provides a catalytically active seed in the protein misfolding cyclic amplification (PMCA) reaction. PMCA opens therefore a perspective for considerably improving the detectability of prions in soil samples from the field.



http://www.plosone.org/article/fetchObjectAttachment.action?uri=info%3Adoi%2F10.1371%2Fjournal.pone.0000435&representation=PDF



Prions Adhere to Soil Minerals and Remain Infectious Christopher J. Johnson1,2, Kristen E. Phillips3, Peter T. Schramm3, Debbie McKenzie2, Judd M. Aiken1,2, Joel A. Pedersen3,4*

1 Program in Cellular and Molecular Biology, University of Wisconsin Madison, Madison, Wisconsin, United States of America, 2 Department of Animal Health and Biomedical Sciences, School of Veterinary Medicine, University of Wisconsin Madison, Madison, Wisconsin, United States of America, 3 Molecular and Environmental Toxicology Center, University of Wisconsin Madison, Madison, Wisconsin, United States of America, 4 Department of Soil Science, University of Wisconsin Madison, Madison, Wisconsin, United States of America

Abstract An unidentified environmental reservoir of infectivity contributes to the natural transmission of prion diseases (transmissible spongiform encephalopathies [TSEs]) in sheep, deer, and elk. Prion infectivity may enter soil environments via shedding from diseased animals and decomposition of infected carcasses. Burial of TSE-infected cattle, sheep, and deer as a means of disposal has resulted in unintentional introduction of prions into subsurface environments. We examined the potential for soil to serve as a TSE reservoir by studying the interaction of the disease-associated prion protein (PrPSc) with common soil minerals. In this study, we demonstrated substantial PrPSc adsorption to two clay minerals, quartz, and four whole soil samples. We quantified the PrPSc-binding capacities of each mineral. Furthermore, we observed that PrPSc desorbed from montmorillonite clay was cleaved at an N-terminal site and the interaction between PrPSc and Mte was strong, making desorption of the protein difficult. Despite cleavage and avid binding, PrPSc bound to Mte remained infectious. Results from our study suggest that PrPSc released into soil environments may be preserved in a bioavailable form, perpetuating prion disease epizootics and exposing other species to the infectious agent.

Synopsis Transmissible spongiform encephalopathies (TSEs) are a group of incurable diseases likely caused by a misfolded form of the prion protein (PrPSc). TSEs include scrapie in sheep, bovine spongiform encephalopathy (“mad cow” disease) in cattle, chronic wasting disease (CWD) in deer and elk, and Creutzfeldt-Jakob disease in humans. Scrapie and CWD are unique among TSEs because they can be transmitted between animals, and the disease agents appear to persist in environments previously inhabited by infected animals. Soil has been hypothesized to act as a reservoir of infectivity, because PrPSc likely enters soil environments through urinary or alimentary shedding and decomposition of infected animals. In this manuscript, the authors test the potential for soil to serve as a reservoir for PrPSc and TSE infectivity. They demonstrate that PrPSc binds to a variety of soil minerals and to whole soils. They also quantitate the levels of protein binding to three common soil minerals and show that the interaction of PrPSc with montmorillonite, a common clay mineral, is remarkably strong. PrPSc bound to Mte remained infectious to laboratory animals, suggesting that soil can serve as a reservoir of TSE infectivity.



http://www.plospathogens.org/article/info:doi%2F10.1371%2Fjournal.ppat.0020032



Direct Detection of Soil-Bound Prions Sacha Genovesi1, Liviana Leita2, Paolo Sequi3, Igino Andrighetto4, M. Catia Sorgato1,5, Alessandro Bertoli1*

1 Dipartimento di Chimica Biologica, Università di Padova, Padova, Italy, 2 Istituto Sperimentale per la Nutrizione delle Piante, Gorizia, Italy, 3 Istituto Sperimentale per la Nutrizione delle Piante, Roma, Italy, 4 Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy, 5 CNR Istituto di Neuroscienze, Padova, Italy

Abstract Scrapie and chronic wasting disease are contagious prion diseases affecting sheep and cervids, respectively. Studies have indicated that horizontal transmission is important in sustaining these epidemics, and that environmental contamination plays an important role in this. In the perspective of detecting prions in soil samples from the field by more direct methods than animal-based bioassays, we have developed a novel immuno-based approach that visualises in situ the major component (PrPSc) of prions sorbed onto agricultural soil particles. Importantly, the protocol needs no extraction of the protein from soil. Using a cell-based assay of infectivity, we also report that samples of agricultural soil, or quartz sand, acquire prion infectivity after exposure to whole brain homogenates from prion-infected mice. Our data provide further support to the notion that prion-exposed soils retain infectivity, as recently determined in Syrian hamsters intracerebrally or orally challanged with contaminated soils. The cell approach of the potential infectivity of contaminated soil is faster and cheaper than classical animal-based bioassays. Although it suffers from limitations, e.g. it can currently test only a few mouse prion strains, the cell model can nevertheless be applied in its present form to understand how soil composition influences infectivity, and to test prion-inactivating procedures.



http://www.plosone.org/article/info:doi%2F10.1371%2Fjournal.pone.0001069



now, something i have pondered long about, with the atypical BSE in Texas and Alabama, where, as far as i know, those farms WERE NOT quarantined for 5 years due to an atypical TSE. HOWEVER, the farms of the atypical scrapie from where the mad sheep of mad river valley occurred, these farms were quarantined. ...

----- Original Message -----

From: Terry S. Singeltary Sr.

To: mhtml:%7B33B38F65-8D2E-434D-8F9B-8BDCD77D3066%7Dmid://00000169/!x-usc:mailto:Boyd.Rutherford@usda.gov

Sent: Sunday, February 25, 2007 12:35 PM

Subject: FOIA REQUEST FOR ATYPICAL TSE INFORMATION ON VERMONT SHEEP

Greetings USDA,

I respectfully request the final results of the mouse bio-assays test that were to have supposedly began 2+ years late, 5 years ago, on the imported sheep from Belgium ?

WHAT happened to the test results and MOUSE BIO-ASSAYS of those imported sheep from Belgium that were confiscated and slaughtered from the Faillace's, what sort of TSE did these animals have ?

WERE they atypical scrapie, BSE, and or typical scrapie ?

HOW much longer will you refuse to give us this information ? and for what reason ?

WHY is it that the Farm of the Mad Sheep of Mad River Valley were quarantined for 5 years, but none of these farms from Texas and Alabama with Atypical TSE in the Bovine, they have not been quarantined for 5 years,why not, with the real risk of BSE to sheep, whom is to say this was not BSE ?

snip...

full text ;



http://foiamadsheepmadrivervalley.blogspot.com/2008/04/re-foia-of-declaration-of-extraordinary.html



Monday, September 1, 2008 RE-FOIA OF DECLARATION OF EXTRAORDINARY EMERGENCY BECAUSE OF AN ATYPICAL T.S.E. (PRION DISEASE) OF FOREIGN ORIGIN IN THE UNITED STATES [No. 00-072-1] September 1, 2008

Greetings again BSE-L members,

I had a pleasant surprise this past Saturday. I got an unexpected package from O.I.G. on my old F.O.I.A. request, of the final test results of the infamous mad sheep of mad river valley. IF you all remember, back on Thu, 24 Apr 2008 15:00:20 -0500 I wrote ;

snip...full text ;



http://foiamadsheepmadrivervalley.blogspot.com/2008/09/re-foia-of-declaration-of-extraordinary.html



http://www.ngpc.state.ne.us/cgi-bin/ultimatebb.cgi?ubb=get_topic;f=12;t=000469



http://www.ngpc.state.ne.us/cgi-bin/ultimatebb.cgi?ubb=print_topic;f=12;t=000469



i remember a few years back ???

that a study showed the prion uptake in a tomato plant, not that this would surprise me ;

56. Members considered that there is no evidence that crops grown on the land which received composted excreta from BSE-challenged animals pose a TSE risk to humans or animals. One member suggested that, as some of these animals are orally challenged with high doses of BSE-infected materials, and the distribution of infectivity in the digestive system is not completely understood, it might be premature to conclude that there is no infective agent in the manure. Furthermore, an unpublished study had indicated low level absorption of PrP from soil by tomato plants although it should be noted that this study had not been repeated. Details of this work would be sent to the SEAC Secretary. Dr Matthews explained that most of the manure from animals challenged with high doses of BSE had already been composted and used for coppicing. Members agreed that the risks from disposal of residual manure from experimental animals would be much less than historic risks of on farm contamination from naturally infected animals at the height of the BSE epidemic.



http://www.seac.gov.uk/minutes/final91.pdf



disturbing to say the least. ...TSS

Tuesday, January 13, 2009

Antemortem detection of PrPCWD in preclinical, ranch-raised Rocky Mountain elk (Cervus elaphus nelsoni) by biopsy of the rectal mucosa Full Scientific Reports



http://chronic-wasting-disease.blogspot.com/2009/01/antemortem-detection-of-prpcwd-in.html



Saturday, January 10, 2009

Chronic Wasting Disease Investigation Update Michigan December 18, 2008



http://chronic-wasting-disease.blogspot.com/2009/01/chronic-wasting-disease-investigation.html



Sunday, September 07, 2008

CWD LIVE TEST, and the political aspects or fallout of live testing for BSE in cattle in the USA



http://chronic-wasting-disease.blogspot.com/2008/09/cwd-live-test-and-political-aspects-or.html



2008 CWD Laboratory Testing for Wild White-tailed Deer



http://www.michigan.gov/emergingdiseases/0,1607,7-186-25806-202922--,00.html



Wednesday, January 07, 2009

CWD to tighten taxidermy rules Hunters need to understand regulations



http://chronic-wasting-disease.blogspot.com/2009/01/cwd-to-tighten-taxidermy-rules-hunters.html



Monday, January 05, 2009

CWD, GAME FARMS, BAITING, AND POLITICS



http://chronic-wasting-disease.blogspot.com/2009/01/cwd-game-farms-baiting-and-politics.html



Thursday, December 25, 2008 Lions and Prions and Deer Demise



http://chronic-wasting-disease.blogspot.com/2008/12/lions-and-prions-and-deer-demise.html



Tuesday, January 06, 2009

CWD Update 93 December 29, 2008



http://chronic-wasting-disease.blogspot.com/2009/01/cwd-update-93-december-29-2008.html



Tuesday, September 09, 2008 CWD MICHIGAN UPDATE September 5, 2008



http://chronic-wasting-disease.blogspot.com/2008/09/cwd-michigan-update-september-5-2008.html



Monday, August 25, 2008 CWD FIRST DOCUMENTED IN MICHIGAN



http://chronic-wasting-disease.blogspot.com/2008/08/cwd-first-documented-in-michigan.html



When Atypical Scrapie cross species barriers

Authors

Andreoletti O., Herva M. H., Cassard H., Espinosa J. C., Lacroux C., Simon S., Padilla D., Benestad S. L., Lantier F., Schelcher F., Grassi J., Torres, J. M., UMR INRA ENVT 1225, Ecole Nationale Veterinaire de Toulouse.France; ICISA-INlA, Madrid, Spain; CEA, IBiTec-5, DSV, CEA/Saclay, Gif sur Yvette cedex, France; National Veterinary Institute, Postboks 750 Sentrum, 0106 Oslo, Norway, INRA IASP, Centre INRA de Tours, 3738O Nouzilly, France.

Content

Atypical scrapie is a TSE occurring in small ruminants and harbouring peculiar clinical, epidemiological and biochemical properties. Currently this form of disease is identified in a large number of countries. In this study we report the transmission of an atypical scrapie isolate through different species barriers as modeled by transgenic mice (Tg) expressing different species PRP sequence.

The donor isolate was collected in 1995 in a French commercial sheep flock. inoculation into AHQ/AHQ sheep induced a disease which had all neuro-pathological and biochemical characteristics of atypical scrapie. Transmitted into Transgenic mice expressing either ovine or PrPc, the isolate retained all the described characteristics of atypical scrapie.

Surprisingly the TSE agent characteristics were dramatically different v/hen passaged into Tg bovine mice. The recovered TSE agent had biological and biochemical characteristics similar to those of atypical BSE L in the same mouse model. Moreover, whereas no other TSE agent than BSE were shown to transmit into Tg porcine mice, atypical scrapie was able to develop into this model, albeit with low attack rate on first passage.

Furthermore, after adaptation in the porcine mouse model this prion showed similar biological and biochemical characteristics than BSE adapted to this porcine mouse model. Altogether these data indicate.

(i) the unsuspected potential abilities of atypical scrapie to cross species barriers

(ii) the possible capacity of this agent to acquire new characteristics when crossing species barrier

These findings raise some interrogation on the concept of TSE strain and on the origin of the diversity of the TSE agents and could have consequences on field TSE control measures.



http://www.neuroprion.org/resources/pdf_docs/conferences/prion2008/abstract-book-prion2008.pdf



SCRAPIE USA

INFECTED AND SOURCE FLOCKS

There were 20 scrapie infected and source flocks with open statuses (Figure 3) as of April, 30, 2008. Twenty eight new infected and source flocks have been designated in FY 2008 (Figure 4); three source flocks were reported in April. ...snip

POSITIVE SCRAPIE CASES

As of April 30, 2008, 122 new scrapie cases have been confirmed and reported by the National Veterinary Services Laboratories (NVSL) in FY 2008 (Figure 6). Of these, 103 were field cases and 19* were Regulatory Scrapie Slaughter Surveillance (RSSS) cases (collected in FY 2008 and reported by May 20, 2008). Positive cases reported for April 2008 are depicted in Figure 7. Eighteen cases of scrapie in goats have been confirmed by NVSL since implementation of the regulatory changes in FY 2002 (Figure 8). The most recent positive goat case was confirmed in February 2008 and originated from the same herd in Michigan as the other FY 2008 goat cases. ...snip

CAPRINE SCRAPIE PREVALENCE STUDY (CSPS)

snip...

However, four positive goats have been identified this fiscal year through field investigations. One was a clinical suspect submitted for testing and the other three originated from the birth herd of the clinical case.

ANIMALS SAMPLED FOR SCRAPIE TESTING

As of April 30, 2008, 26,703 animals have been sampled for scrapie testing: 23,378 RSSS, 1,517 goats for the CSPS study, 1,466 regulatory field cases, 270 regulatory third eyelid biopsies, and 72 regulatory rectal biopsies (chart 8).

TESTING OF LYMPHOID TISSUE OBTAINED BY RECTAL BIOPSY WAS APPROVED BY USDA AS AN OFFICIAL LIVE-ANIMAL TEST ON JANUARY 11, 2008. ...

PLEASE NOTE, (FIGURE 6), Scrapie Confirmed Cases in FY 2008 MAP, PA 3, 1**, Two cases-state of ID UNKNOWN, 1 case Nor98-like**



http://www.aphis.usda.gov/animal_health/animal_diseases/scrapie/downloads/monthly_scrapie_rpt.pps



http://scrapie-usa.blogspot.com/



P03.141

Aspects of the Cerebellar Neuropathology in Nor98

Gavier-Widén, D1; Benestad, SL2; Ottander, L1; Westergren, E1 1National Veterinary Insitute, Sweden; 2National Veterinary Institute,

Norway Nor98 is a prion disease of old sheep and goats. This atypical form of scrapie was first described in Norway in 1998. Several features of Nor98 were shown to be different from classical scrapie including the distribution of disease associated prion protein (PrPd) accumulation in the brain. The cerebellum is generally the most affected brain area in Nor98. The study here presented aimed at adding information on the neuropathology in the cerebellum of Nor98 naturally affected sheep of various genotypes in Sweden and Norway. A panel of histochemical and immunohistochemical (IHC) stainings such as IHC for PrPd, synaptophysin, glial fibrillary acidic protein, amyloid, and cell markers for phagocytic cells were conducted. The type of histological lesions and tissue reactions were evaluated. The types of PrPd deposition were characterized. The cerebellar cortex was regularly affected, even though there was a variation in the severity of the lesions from case to case. Neuropil vacuolation was more marked in the molecular layer, but affected also the granular cell layer. There was a loss of granule cells. Punctate deposition of PrPd was characteristic. It was morphologically and in distribution identical with that of synaptophysin, suggesting that PrPd accumulates in the synaptic structures. PrPd was also observed in the granule cell layer and in the white matter. The pathology features of Nor98 in the cerebellum of the affected sheep showed similarities with those of sporadic Creutzfeldt-Jakob disease in humans.

***The pathology features of Nor98 in the cerebellum of the affected sheep showed similarities with those of sporadic Creutzfeldt-Jakob disease in humans.



http://www.prion2007.com/pdf/Prion%20Book%20of%20Abstracts.pdf



Here we report that both Nor98 and discordant cases, including three sheep homozygous for the resistant PrPARR allele (A136R154R171), efficiently transmitted the disease to transgenic mice expressing ovine PrP, and that they shared unique biological and biochemical features upon propagation in mice. These observations support the view that a truly infectious TSE agent, unrecognized until recently, infects sheep and goat flocks and may have important implications in terms of scrapie control and public health.

Edited by Stanley B. Prusiner, University of California, San Francisco, CA, and approved September 12, 2005 (received for review March 21, 2005)



http://www.pnas.org/cgi/content/abstract/0502296102v1



NOR-98 ATYPICAL SCRAPIE 5 cases documented in USA in 5 different states USA 2007



http://nor-98.blogspot.com/2008/04/seac-spongiform-encephalopathy-advisory.html



Tuesday, June 3, 2008 SCRAPIE USA UPDATE JUNE 2008 NOR-98 REPORTED PA



http://nor-98.blogspot.com/2008/06/scrapie-usa-update-june-2008-nor-98.html



http://nor-98.blogspot.com/



Monday, December 1, 2008 When Atypical Scrapie cross species barriers



http://nor-98.blogspot.com/2008/12/when-atypical-scrapie-cross-species.html



To be published in the Proceedings of the Fourth International Scientific Congress in Fur Animal Production. Toronto, Canada, August 21-28, 1988

Evidence That Transmissible Mink Encephalopathy Results from Feeding Infected Cattle

R.F. Marsh* and G.R. Hartsough

•Department of Veterinary Science, University of Wisconsin-Madison, Madison, Wisconsin 53706; and ^Emba/Creat Lakes Ranch Service, Thiensville, Wisconsin 53092

ABSTRACT

Epidemiologic investigation of a new incidence of transmissible mink encephalopathy (TME) in Stetsonville, Wisconsin suggests that the disease may have resulted from feeding infected cattle to mink. This observation is supported by the transmission of a TME-like disease to experimentally inoculated cattle, and by the recent report of a new bovine spongiform encephalopathy in England.

snip...

OBSERVATIONS AND RESULTS

A New Incidence of TME. In April of 1985, a mink rancher in Stetsonville, Wisconsin reported that many of his mink were “acting funny”, and some had died. At this time, we visited the farm and found that approximately 10% of all adult mink were showing typical signs of TME: insidious onset characterized by subtle behavioral changes, loss of normal habits of cleanliness, deposition of droppings throughout the pen rather than in a single area, hyperexcitability, difficulty in chewing and swallowing, and tails arched over their _backs like squirrels. These signs were followed by progressive deterioration of neurologic function beginning with locomoior incoordination, long periods of somnolence in which the affected mink would stand motionless with its head in the corner of the cage, complete debilitation, and death.

Over the next 8-10 weeks, approximately 40% of all the adult mink on the farm died from TME. Since previous incidences of TME were associated with common or shared feeding practices, we obtained a careful history of feed ingredients used over the past 12-18 months. ***The rancher was a “dead stock” feeder using mostly (>95%) downer or dead dairy cattle and a few horses. Sheep had never been fed.***

snip...end



http://www.bseinquiry.gov.uk/files/mb/m09/tab05.pdf



Epidemiology Epidemiologic studies suggest that animals contract the disease by external exposure to the infectious agent, such as by eating contaminated feed. No evidence suggests that the TME agent spreads by contact between unrelated mink or from mother to nursing young. The disease has been identified in both genders and all color phases in animals greater than 1 year old. The first documented TME outbreak in the United States occurred in 1947 on one ranch in Wisconsin and then on a ranch in Minnesota that had received mink from the Wisconsin ranch. In 1961, TME outbreaks occurred on five ranches in Wisconsin. In Factsheet Veterinary Services February 2002 APHIS 1963, outbreaks occurred in Idaho, Minnesota, and Wisconsin. Epidemiologic data from the Minnesota and Wisconsin outbreaks trace the cases in those States to one common purchased food source.

snip...

The 1985 Stetsonville Outbreak The most recent TME outbreak occurred on one mink ranch in Stetsonville, WI, in 1985. In the herd of 7,300 adult mink, 60 percent of the animals died. Clinical signs included tail arching, incoordination, and hyperexcitability. At the most advanced stages of the disease, the animals were in trancelike states and eventually died. The outbreak lasted 5 months. Microscopic examination of sections of the brain confirmed the spongelike changes characteristic of TME. Diagnostic tests identified the prion protein. The following year, mink born during the outbreak showed no signs of TME. The late Richard Marsh, a veterinary virologist at the University of Wisconsin who studied the transmission of TME and other TSE’s, investigated this outbreak. Marsh learned that the mink were fed a diet composed of fresh meat products from “downer cattle” and commercial sources of fish, poultry, and cereal. Downer cattle are nonambulatory and cannot rise because they are affected with a condition such as a metabolic disease, broken limbs, or a central nervous system disorder. Marsh theorized that the meat from these downer cattle introduced a TSE agent to the mink in which TME resulted. Although Marsh’s hypothesis is based on speculation and anecdotal evidence, in 1993 APHIS adjusted its national BSE surveillance program to include testing downer cattle for evidence of a TSE. The brains of more than 20,141 cattle have been examined at APHIS’ National Veterinary Services Laboratories and other State diagnostic laboratories. Not a single tissue sample has revealed evidence of BSE or another TSE in cattle.



http://www.aphis.usda.gov/publications/animal_health/content/printable_version/fs_ahtme.pdf



AND as everyone knows, the rest is history, those dead-stock downers, the most high risk cattle, were NOT tested, and in FACT, was a major source of YOUR CHILDRENS SCHOOL LUNCH PROGRAM, all across the Nation. sorry, these are the most high risk cattle for TSE aka mad cow disease, and i am a bit touchy about this topic. ...
sorry. ...terry

DOWNER COW SCHOOL LUNCH PROGRAM



http://downercattle.blogspot.com/



IS THERE A SCRAPIE-LIKE DISEASE IN CATTLE ?

In April of 1985, a mink rancher in Wisconsin reported a debilitating neurologic disease in his herd which we diagnosed as TME by histopathologic findings confirmed by experimental transmission to mink and squirrel monkeys. The rancher was a ''dead stock'' feeder using mostly (>95%) downer or dead dairy cattle and a few horses. She had never been fed.

We believe that these findings may indicate the presence of a previously unrecognized scrapie-like disease in cattle and wish to alert dairy practitioners to this possibility.

snip...

PROCEEDINGS OF THE SEVENTH ANNUAL WESTERN CONFERENCE FOR FOOD ANIMAL VETERINARY MEDICINE, University of Arizona, March 17-19, 1986



http://www.bseinquiry.gov.uk/files/mb/m09a/tab01.pdf



http://www.bseinquiry.gov.uk/files/mb/m09/tab05.pdf



NOW, back to those mad mink i.e. TME. let me throw a curve ball here ;

Phenotypic Similarity of Transmissible Mink Encephalopathy in Cattle and L-type Bovine Spongiform Encephalopathy in a Mouse Model Thierry Baron,* Anna Bencsik,* Anne-Gaëlle Biacabe,* Eric Morignat,* and Richard A. Bessen† Emerging Infectious

Transmissible mink encepholapathy (TME) is a foodborne transmissible spongiform encephalopathy (TSE) of ranch-raised mink; infection with a ruminant TSE has been proposed as the cause, but the precise origin of TME is unknown. To compare the phenotypes of each TSE, bovine- passaged TME isolate and 3 distinct natural bovine spongiform encephalopathy (BSE) agents (typical BSE, Htype BSE, and L-type BSE) were inoculated into an ovine transgenic mouse line (TgOvPrP4). Transgenic mice were susceptible to infection with bovine-passaged TME, typical BSE, and L-type BSE but not to H-type BSE. Based on survival periods, brain lesions profi les, disease-associated prion protein brain distribution, and biochemical properties of protease-resistant prion protein, typical BSE had a distint phenotype in ovine transgenic mice compared to L-type BSE and bovine TME. The similar phenotypic properties of L-type BSE and bovine TME in TgOvPrP4 mice suggest that L-type BSE is a much more likely candidate for the origin of TME than is typical BSE. Transmissible mink encephalopathy (TME) is a rare prion disease in ranch-raised mink (Mustela vison) in North America and Europe (1–4). Six outbreaks have been reported from 1947 through 1985 in North America, and several have been linked to contaminated commercial feed (1). Although contamination of feed with scrapie-infected sheep parts has been proposed as the cause of TME, the origin of the disease remains elusive. The idea that scrapie in sheep may be a source of TME infection is supported by fi ndings that scrapie-infected mink have a similar distribution of vacuolar pathologic features in the brain and the same clinical signs as mink with natural and experimental TME (5). However, mink are not susceptible to scrapie infection following oral exposure for up to 4 years postinoculation, which suggests that either the scrapie agent may not be the source of natural TME infection or that only specifi c strains of the scrapie agent are able to induce TME (6,7). Epidemiologic investigations in the Stetsonville, Wisconsin, outbreak of TME in 1985 suggested a possible cattle origin, since mink were primarily fed downer or dead dairy cattle but not sheep products (8). Experimental transmission of Stetsonville TME into cattle resulted in transmissible spongiform encephalopathy (TSE) disease with an incubation period of 18.5 months. Back passage of bovine TME into mink resulted in incubation periods of 4 and 7 months after oral or intracerebral inoculation, respectively, which was similar to that found following inoculation of Stetsonville TME into mink by these same routes (8). These fi ndings indicated that cattle are susceptible to TME, and that bovine-passaged TME did not result in a reduced pathogenicity for mink. These studies raised the question as to whether an unknown TSE in cattle was the source of TME infection in the Stetsonville outbreak. Several additional TME outbreaks in the United States have been associated with mink diet that contained downer or dead cattle (9). ...

snip...full text ;



http://www.cdc.gov/EID/content/13/12/pdfs/1887.pdf



http://transmissible-mink-encephalopathy.blogspot.com/



SPORADIC CJD IN FARMERS, FARMERS WIVES,



http://bseinquiry.blogspot.com/2008/05/sporadic-cjd-in-farmers-farmers-wives.html



MAD COW DISEASE BSE CJD CHILDREN VACCINES BSE, Children, CJD, Mad Cow Disease, VACCINES



http://bseinquiry.blogspot.com/2008/05/mad-cow-disease-bse-cjd-children.html



BSE, CJD, and Baby foods (the great debate 1999 to 2005 )



http://bseinquiry.blogspot.com/2008/05/bse-cjd-and-baby-foods-great-debate.html



BSE Inquiry DRAFT FACTUAL ACCOUNT DFA



http://bseinquiry.blogspot.com/2008/05/bse-inquiry-draft-factual-account-dfa.html



THE USDA CERTIFIED MAD COW DEBACLE, BLUNDER, AND COVER-UP

Thursday, October 18, 2007

BSE BASE MAD COW TESTING TEXAS, USA, AND CANADA, A REVIEW OF SORTS



http://madcowtesting.blogspot.com/2007/10/bse-base-mad-cow-testing-texas-usa-and.html



BSE BASE MAD COW TESTING TEXAS, USA, AND CANADA



http://madcowtesting.blogspot.com/



Sunday, December 28, 2008

MAD COW DISEASE USA DECEMBER 28, 2008 an 8 year review of a failed and flawed policy



http://bse-atypical.blogspot.com/2008/12/mad-cow-disease-usa-december-28-2008-8.html



USDA CERTIFIED DEADSTOCK DOWNER COW SCHOOL LUNCH PROGRAM



http://downercattle.blogspot.com/2008/12/evaluation-of-fsis-management-controls.html



http://downercattle.blogspot.com/




TSS

Labels: , , , ,